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Zed3D is a document about computer graphics, rparécularly real-time 3d
graphics. This document should be viewed as a practical refdoenadirst and
perhaps second course in computer graphics.

The original Zed3D document gremt of my worknotes. As a matter of fact, the
original Zed3D, up to version 0.61beta, was mgrk notes. Assuch, it was
messy, incomplete and often incorrect. | have attempted to chiseatbitnow. |
still consider these mwork notes, but | have added mdogmal introductory
material which was not in the original document.

In this document, | wilattempt todescribe various aspects of compufephics
in a clear, useful and complete fashigou will find quite a bit ofthe theoretical
aspects, copies of the calculations and proofs | made and so forth.



However, there is thpainful fact that | ammerely astudent,trying to mark my
territory in theuniversitywork, and since thigvork does notserve that purpose
very well,Zed3D will oftentimes bé&cking inareas that Wish | hadmoretime to
document. Also, I will attempt to distribute anotiméze portable graphicengine
in the future, but that's only if | can find the time to make it.

Also, please note that this document and any accompanying
documentation/software for which | am the autstoouldnot beconsideregublic
domain.You can redistribute this whole thing, unmodified, if no fee is charged for
it, otherwise you need the author's writf@rmission. Also | anmot resposible

for anything that might happen anywhere even if it's related direathgliogctly to
this package. If you wish to encourage my effied|free to send me a 10$ check,
which will be considered to be youwsfficial registration. If you'rereally on a
budget, | would appreciate at least a postcard.amft rate, please read the
registration paragraph below. There have been rumours about ae@sikih of
Zed3D aboutThis would be a fake, versions betwéeé3 and 0.79 daot exist,
and have never existed.

Contact information

If you wish tocontact me foanyreason, you should hesingthe following snail-
mail address or mg-mailaddressGiventhatsnail-mailaddresses tend to be more
stable over time, you might try it if | don't answer to your electronic messages.

E-Mail Address: zed@cs.mcgill.ca

Snail Mail Address:
For the 1995-1996 school year, | will reside at:

Sébastien Loisel

3436 Aylmer Street, apartment 2
Montréal, Québec, Canada
Postal Code: H2X 2B6

Otherwise, it is possible to reach me at:
Sébastien Loisel
1 J.K. Laflamme

Lévis, Québec, Canada
Postal Code: G6V 3R1

Registration



If you want to register your copy of Zed3D 1de, and be able tase the source
in any wayyou want, evecommercial(though commercial utilization of the
documentation [thidile] still requires the writteipermission ofthe author), you
can send me a cheque of US$10fd. more infamation, please consult tHige
register.frmwhich should haveome with this document. If yoare experiencing
difficulties with registration or if thdile register.frm is missing, pleasgil me and
we will work something out.

Overview

| am trying to put a bit more structure into this document. As such, thasvist is
meant to be structured at this moment.

The first section iheavily mathematical. It deals with transformations by and at
large. First are discussed linear afithe transformationswhich are used t@pin

and move stuff in space in a useful fashion, then is discussepistifidd the
perspective transforms. Theseo sections arevery theoreticalput are required
for proper understanding of the later sections.

Then there willfollow a section dealingpecifically with applications of the
preceding theory. Namely, rotation matrices and their inverse and object hierarchy.

The third "section" concerngself mainly with rendering techniques. These are
becoming less and lesmportant for several reasons. Themplexity of the
problem is of course not in the rendering section of the pipeline. Second, the recent
trend has pushed the renderipgrt of the pipeline intaheap video hardware
which can ddhejob fast anceffectively whilethe CPU iff to someother,more
important taskEventually, we can hopthat transforming objects will also be
made apart of popular low-cost hardware, but thamains to beseen. As it is

now, this is ofterthe job of eitherthe CPU, osometimes we might wish igve

this job to a better co-processor (for example, a programmable DSP).

Fourthly, an attempivill be made to describe a few shading models asitile
surface determination techniques. Shading maalelsbutioosely related to the
way the polygons are drawNisible surface determination depends somewhat
more on the way polygons are drawn, and is often implemented in hardware.

Thefollowing section deals with a few tiie computer graphics relatpgbblems

that are often encountered, such as error tole@mal computatiorthe problem

of finding acorrectly oriented normal, polygon triangulation and quaternions to
represent orientations, which are especially useful in keyframe animations.



There is also a shoglossary and eveshorter bibliography. [1] is ahighly
recommended reading to anyone intending to do secmuputer graphics. There
is a lot of overlap between Zed3D and [1], tho{ighdoubtlessly contains great
deal more information than thtext. However, Zed3D does cover a rare few
topics which are more or less well covered in [1] (example: quaternions).

Of course, a lot of topics ram to becovered, such as real-timellision
detection, octrees armadher data structures. Howeveuyrifortunately dahot have
the time to write all of that down for the general public.
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Vector mathematics

Introduction

Linear algebra is aather broad yebasic field ofcollegelevel mathematics. It is
beingtaught (orshould be aany rate) early on to students in mathematics and
engineering. Howevesimple itis, it's a lengthyopic to discussAnd since this
document i1ot meant as a mathematiestbook, | willonly givehere the gist of
the thing.

If you need further information othe topic, browse youocal libraryfor linear
algebrabooks and somesuch, or go ask a professor. As of frawot making
any bibliographyfor this, but if andvhen | do, I'll try togive a fewdecent
references.

The purpose ofimear algebra in 3d graphics is to implemalitthe rotation,
skewing, translation, changes in coordinates, and otheaffise transformations

to 3d object. The applications range framrelyrotating an object about its own
system of axis t@bject hierarchymoving cameras and can be extended through
guaternions for rotation interpolation and such.

As such, linear algebra is someththgt isessential foany 3dgraphics engine to
be useful.

Since my primeconcern is 3d graphics, lillvgive only whatever theory is
absolutely necessary ftrat topic.What's below extends in a vary natural way to
n dimensions, n>3, except for cross product, which is a bit awkward.

On notation
| will frequently use the sigma symbol for sums, for example, something like this:
ZOsisna

which stands for

dotataptast...ta.
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More generally, the notation

Ying

stands for'sum of all afor all i in1”. This noation will not beused frequently in
this work. Notation from more advanced math might be used especially in proofs.

Vector operations

A vector in 3d is noted(a,b,c) where a, b and ¢ areal numbers Similarly, a
vector in 2d is noted(a,b) for a, b real numbers. Theector for which all
components araull deserves a special mention, itusually noted O, with the
proper number of components implied in the notation but not explicitly given.

A vector should be thought of as an oriented line segment froorithe (0) to a

point P in space. Let's take a 2dample (this is alswalid for 3d orhigher
dimension). Thevector V=(1,2) can be represented as an oriented sedraent
(0,0) to P=(1,2), asan be seen below. Vector shouldalways bepictured as an
arrow from 0 to the point RUsing this model, we can think of\aector from
P1=(a,b) to P2=(c,d) as the vector from (P1-P1) to (P2-P1), or from (0,0) to (c-
a,d-b). This illustrates a very importapoint. The vectofrom P1 to P2 is the
exact same vector as the vector from 0 to PZFRD. vectors thatliffer only by a
translation are considered equivalent.

Y
27 P=(1,2)
1 \/
X
©0) 1 2

Vector addition is defined as follows. Let U=(ul,u2,u3) and V=(v1,v2,v3) then the
notation U+V means (ul+vl,u2+v2,u3+v3) Similarly, for 2d vectors,
(ul,u2)+(vl,v2) mean®l+vl,u2+v2)

Multiplication of a vector by a scalar is defined as follow. Givewector U and a
scalar a (a is a real number), tlaety meangaxul,axu2,axu3).

Multiplication by the scalar -1 has a special notatibaU is written simply-U.

Vectordifferenceis defined from the abovE-V can be rewrittetd+-1*V, which
is a simple addition and a multiplication by the scalar -1 as above.

11



Multiplication of two vectors has no intuitive meaningdowever,two types of
"multiplications" ofvectors areusually defined, which have littleelation to the
usual real number multiplication.

The first isdot product. U dot V (usuallynotedUeV) yields areal numbefnot a
vector). (ul,u2,u3)vl,v2,v3) meansulxvl+u2xv2+u3xv3. Similarly for 2d
vectors, (ul,u3)vl,v2Eulxvli+u2xv2. Note that the 1d case corresponds to
normal multiplication of real numbers in a certain way.

Vectors have dength, defined as followThe lengthlor module, or norm) of
vector U is writtenfU| and has th&alue of(Ue U)1/2. If the length of avector is
one, the vector isaid to be ofunit length, or a unit or normal vector.
Multiplying a vector V by thescalar 1/|V| izallednormalizing a vectorbecause
it has the effect omaking V a unitvector. In the 1d caséength simplifies to
absolute value thus the notation |U]|.

Dot product is also used tefineangle.Us V=|U|x|V|xCo, wheref is theangle
between U and V. Incidentally, |iJ|=1 then this simplifies to |¥Co9D, which is
the length of therojection of V onto U. It is of note that ¥/ is O if andonly if

either@ is T/2+2kit or |U|=0 or |V|=0Assuming|U| and |V| ar@ot 0,this means
that if U=V is O, then U and V angerpendicular, or orthogonal.

The second produatsually defined orvectors is thecross product U cross V
(usuallynotedUxV) is defined using matrix determinant and somesBahically,
(ul,u2,u3x(vi,v2,v3) is(u2v3-u3v2, u3vl-ulv3, ulv2-u2vl)

It is demonstrable that the cross product of two vectors is perpendicular to the two
vectors and has a length @||V|SinB. The fact that it isperpendicular has
applications which we will see later.
Exercises
Q1 - Do the following vector operations:
a) (1,3,2)+(3,5,6)
b) 1.5¢(3,4,2)
c) (-1,3,03(2,5,2)
d) |(3,4,20/3)|
e) UV where |U|=2, |V|=3 and the angle between U and V is 60 degrees

f) (1,2,3%(4,5,6)

12



Q2 - Which vectors satisfy the equation(l1,1)=07?

Answers
Al- a)(48,8)
b) (4.5,6,3)
c) 13
d) 25/3
e)3
f) (-3,6,-3)

A2 - All vectors thasatisfyul+u2+u3=0. Sincthedot product is Othis means
all vectors that are perpendicular tolbcidentally,these vectors cover thehole
plane and nothingut theplanefor which the nemal is(1,1,1).All the vectors of
the said plane can be expressegél-1,0)+r(0,-1,1) [foexample]for somereal
numbers p and r. This last notet is also known aslacal coordinates system for
the ul+u2+u3=0 plane.

Alcoholism and dependance

Given aset of vector U0, U1, U2, ...Un, these vectors asaid to bdinearly
independentif and only if the following is true:

a0xUO+alxU1+...+arxUn=0 implies that (a0,al,a2, ... , an)=0.

If there exists at least one solution ¥anich (a0, al, a2, ...,an) st zero,then
there exists an infinity of them, and the vector are said liodmly dependant

The geometric interpretation of that isfabows. In 3d, three vectors atimearly
independent if none of them agelinear andall three of them areaot coplanar.
(Colinear means othe same linecoplanar means athhe same plane)Any more
than 3 vectors in 3d and they are certain to be linearly dependant.

For two vectors, in 2d or 3d, they are said to be linearly independent if they are not
colinear. 3 or more vectors in 2d are always linearly dependant.

If a set of vectors arearly independent, they asaid to form dasis 2 linearly
independent vectors form thasisfor aplane, and 3linearly independent vectors
form the basis for a 3gpace

13



The termorthogonal is very frequently used to descriperpendicular vectors. If

a basis is made @irthogonal unit vectors (unit vectors are vectors of nbynthe
base is said to berthonormal. Orthonormalbasisare the mostiseful kind in
typical 3d graphics. If a basisnst orthonormal, it "skews" the space, where if the
vectors are not unit, it "stretches" and/or "compresses" the space.

Each space has a so-caltathonical basis the basis we intuitively find simplest.
For 3d space, thabasis is made ofhe vectorgl,0,0), (0,1,0)and (0,0,1)
Similarly, the canonical basis for 2d space is (1,0) and (0,1).thetteince a basis
is a set of vectors, it would be mdmmal to enclosehe list of vectors incurly
braces, for example, {(2,3) , (-1,0)}.

The vectors of theanonical basiaretraditionallynotedi, j andk for 3d space or
i and j for 2d space. This leads us to introduce another notation.

If vector (a,b,c) isaid to beexpressed in basis pqrthen it meanghat the vector

is axp+bxqg+cxr. Note that a, b and c are scalars and p, q and r are vectors, thus
this combination (formallyreferred to aslinear combination) is defined as
discussed earlier. Ifpgr arejk, this translates to »at+bxjtcxk or
(a,0,0)+(0,b,0)+(0,0,c) or (a,b,c).

However, if pgr is notjk, the matter is differenEor example (assuminggr is
expressed injk space), if p=(1,1,0), g=(0,1,1) and r=(1,0,1), then the vector
(a,b,c) in pgr spaceneans(a,a,0)+(0,b,b)+(c,0,c)=(a+c,atb,b+c) ijk space.
What we just did is called a change of basis.t¥dédk avector that waexpressed

in pgr space and expressed it in ijk space.

Note: normally, to specify whiclspace a vector is expressad we should write
the space in subscrigixample: as irthe preceding paragraph, (a,b,c) is written
either(a,b,c),, or (a+c,a+b,b+c), depending on whether we want itpgr or ijk
space. This notation will help avoid many mistakes.

It would be possibléor pgr to be expressed in sowiterbase than theanonical
base. If that were the casmd if the objective would be to expresstor (a,b,c)
in ijk space, then it might require several transformations to get there.

For simplicity's sake in the further parts dlhis document, we will extend our
definition of vectors to allow for nanly real numbecomponents, but also vector
componentsThis meanshat(a,b,c),, expressed in pgr space<ebxqg+cxr) can
be written aga,b,c),,* (P.9,1)x -

Exercises

Q1 - Are the vectors (1,2,0), (4,2,4) and (-7,-4,-8) linearly independent?

14



Q2 - Sayvector U=(1,3,2), is expressed in pgr space, where pgr expressed in ijk
space is (1,2,Q), (2,0,2),, (0,-1,-1),. Express U in ijk space.

Q3 - Using Question 2's valués p, g and r, and the vector V expressed in ijk
space as (1,1,1), can you express V in pqr space?

Answers
Al - No
A2 - (7’0’4%(

A3 - (1/3, 1/3, -1/3) this exercise is in factalled an inverse transformvhich will
be described later.

On a plane (and of motion sickness)

There areseveral ways to define a plane3iuh. Thefirst one | will present isiseful
because it can be used to represent a plane in n dimensional space, even for n>3.

First you needwo linearly independent vectors to formbasis. Calthem U and

V. Then, if you take ®@J+bxV for all possible values of a and b (them being real
numbers ofcourse), you generatevehole planethat goes through therigin of
space. If you want to displatieat plane in space byector W (e.g. you want the
point pointed to by W to be part of tipkane), theraxU+bxV+W will generate
the desired plan€Proof, for a=b=0, it simplifies to W, thus the point at W is part
of the plane).

Note that the above equatican be writterfa,b) (U,V)+W. As such it can be
viewed as a change of basis, fréine canonical basis of 2dpace to whatever
space U and V's basis is.

Anotherway for defining a planeghat only works in 3d is afollows. (Nae, in n
dimensional space, this will define a n-1 dimensional object). As was seen earlier, if
A+ X=0, then A and X are perpendicular (A and X are vectors). Furthermore, for a
given A, ifyou takeall X's thatsatisfythe equation, yogetall points in aertain

plane. A is generally called normal ttee plane, although the literatdrequently
assumeghat the namal is also of unit length, which m®t necessarythough A
mustnot be thenull vector). Thevalues of Xthat satisfythe plane equatiogiven
includeX=0, since A0=0 forany value of AThus, thafplane passethrough the
origin.

15



If one wants glanethat does nopass through the origin, one should proceed as
follows. (This uses an intuitive form affine transformations, described in depth
later). First,find out the displacemenvector K thatdescribes the position of the
plane in relation taghe origin. Thus, if you subtract K froafl the points in the
plane, theplane ends up dhe origin, and we can use tthefinition above. Thus,
the new definition of the plane i @X-K)=0.

To make this a bit more explicit, let A=(A,B,C) and X=(x,y,z) and K=(k1,k2,k3).
Then theplane equation can be rewritten ax(Ak1)+Bx(y-k2)+Cx(z-k3)=0. A
little algebra allows us to rewrite it as<xXBxy+Cxz=-Axk1-Bxk2-Cxk3. By
setting D=-Ak1-Bxk2-Cxk3, wecan make one more rewriighich isthe final
form: Axx+Bxy+Cxz=D.

It is important to remembethat multiplying both side of the equation by a
constant does nathange the plane. Thuglane x+y+z=1 ighe same as plane
2X+2y+2z=2.

Note that inthis last representation, (A,B,C) tise normal vector to theplane.

The last equation can also be re-writtdmX=D. It would also be easy to
demonstrate thillowing, but | will not do it. Foranypoint P,(AsP-D)/|A| is the
signed distanceto theplane AX=D. The sign can helyou determine on what
side of the plane that the point P lies on. If it is O, P is on the plane. If it is positive,
P is in the directiorthat the normal point&. If it is negative, P is on thside
opposite of the normalThis has application irvisible surface determination
(namely, back face culling).

Also note that if |A]=1, then the signed distance equation simplifiedPtdA

It is easy todemonstrate that the equation foliree in n-space for any integer
value of n>0, igxU+W, where U is a vectqparallel tothe line and W is a point
on the line. As t takes attal values, we generate a line.

Exercises

Q1 - GiventhebasisU=(1,3,2) and V=(2,2,2), and the position vector W=(1,1,0),
find the position in 3d space of the point (3,2) in UV space.

Q2 - Express the plane described in Q1 in the form Ax+By+Cz=D

Q3 - Findthe signed distance of poiri#t,2,4) to theplane usinghe answer for
guestion 2.

Q4 - Giventwo basisvectors for a plane, P and Q, in 3d space, and a position
vector for theplane, R, plushe direction vector of bne, M, that passes through
origin, find the pg space point of intersection between the line and the plane.

16



Answers
Al - (8,14,10)

A2 - x+y-2z=2 (hint : remember that the cross product of U and V is perpendicular
to both U and V).

A3 - -4/(61/2)E|-1.633 - this meanshat the point (4,2,4) is in thdirection
opposite of (1,1,-2) from the plane x+2-2z=2.

A4 - See the perspective chapter on texture mapping.

Orthonormalizing a basis

Sometimes we might have a basis B which is meant tstbenormal, but due to
accumulation in roundoff error in the computer, the vectorsligigly off the unit
length andnot quite perpendicular. Then it is useful to have a wafmding an
orthonormalbasis O fromour basis B while makingure that Cand B arévery
similar" in a certain sense.

The meaning of "very similartan be made explicit easilyet B be thebasis (i,
b, ..., Ity for an-dimensionakpace (jis are vectors). Let O be thasis (q, 0o,
..., 0p). Then, we measure thsimilitude" of Oand B by taking Max(j€bj|), that
is, the greatestlifference betweethe samevector in O and B. The closéhnis
number is to Othe moresimilar O and B are. The methaiven belowwill
generate O from B sudhat thesimilitude is smallenough (note that it will not
necessarily be the smallest possible, it will simply be small enough).

The process in n-dimensional space is as follows. Let
v1=bg

Vn=bn-2 1<i<n(bn® 07) 0j

o=V Vil

Then, thebasis O iorthonormal and hasogd similitude withthe basis B.(Proof
is left as an exercise. Hirfind anupper bound on thseimilitude as a function of
the maximum ofthe dot producbetweentwo vectors of thebasis B and as a
function of the length of the vectors in thasis B.Proof of orthogonalitycomes
from examining y closely. Unit norm of the vectors of the basis is obvious.)

Explicitly for the 3d case, this simplifies to:

01=b1/[by|
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vo=hp-(b2*01)01
0p=Vol|vo|
v3=bz-(bz*01)01-(b3*02)02

03=Vv3/|v3|
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Matrix mathematics

Introduction

Matrices are a tool used ttandle agreatdeal of linear combinations in a
homogeneous way. The operations on matrices alefsed as to ease whatever
task you want to daith them. Be it expressing a system of equationsjaking

a change of basis, to some peculiar uses in calculus.

Normally, matricesare notedising large parenthesis atite numbers written
down in a grid-like disposition as follows. This is a generic 3x3 matrix:

m1l ml2 ml
M=|m21 m22 m23
m31 m32 m3

In general, goxg matrix is noted as aboweith the exceptiorthat it has prows
and g columns. The above matrix can also be wilittem ij) with i and jvarying
from 1 to 3. Thdirst index isthe rownumber, thesecondindex isthe column
number, as in the example above.

A matrix for which p=q, such as the Nhatrix above, is said to be smuare
matrix. There exist a particular type of square mataked anidentity matrix.

There is one suamatrix for each type of square matfe<g. one for 1xInatrices,
one for 2x2 matrices, one for 3x3 matrices, etc...) As an example, thea8x3is
given here:

100
010
001

Strictly speaking, the identity matrix I:ﬁmis defined such as:

mj=0ifizj and my=1ifi=]
Matrix operations
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Matrix addition is defined as follows. Given 2 matrices AJ:)(aand B:(l;]) of
same dimension pxq, then UEIBA+B is defined as being iQJ:(aij +bij ).

Matrix multiplication by a scalar is defined also as follows. Givéine matrix M
and a scalar k, then the operation Lﬁ:):éthM is defined as ip:kxmij.

Matrix multiplication is a bit more involved. It idefined using sums, as follows.
Given matrix A of dimensiopxqg, and matrix B oflimensiongxr, the product
C=AXxB is given by:

Cij =2 1<k=q(Bik ¥Dkj)

More explicitly, for example, we have, for A and B 2x2 matrices:
1172 1xb11+812xb21

C12=2q 1¥b1 231 2xb22

C1=a1xby 1+apxbp1

Cpo=a1xb12+apxbpo

(Note: 3 ;.q(aik*bkj) means “sum of (jxbyj) for k varying from 1 to q.")

It is important to notice thatatrix multiplication isnot commutative in the

general casd-or example, it inot true that AxB=BxA with A and B matrices in
the general case, even if A and B are square matrices. Mattiiplication is,
however, associative (ie, Ax(BxC)=(AxB)xC) and distributive (ie,

A(B+C)=AB+AC).

The identity matrix hathe property that, forny matrix A, Al=1xA=A (I is the
neutral elementof matrix multiplication).

Matrix transposition of matrix A, notedAT, reflects the Anatrix alongthe great
diagonal. That is, say Arlpaand AT:(bij), then we haveijl;qi.

There are alsotherinteresting operations you can do on a matrix, howtnesr
are muchmuchmore involved. As of now, | amot willing to gettoo deeply into
this. The topics of interest ammatrix determinant (which has a recursive
definition) and matrix inversion. | witontentmyself by givingone definition of
matrix determinant andneway of finding matrix imerse. Notehat there are at
least a couple of different definitiorier determinant, though thesually boil
down to thesame thing. Alsothere aremanyways of findingthe inverse of a
matrix, | will contendmyself with presentingonly one method. Striadefinitions
will be given, for more extensive coverage, consult a linear algebra book.
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mll mi12 ml nil n1l2 ni3
m21 m22 m23|-(n21 n22 n23
m31 m32 m3 n31 n32 n33

Answer

Al

mlinll m12n2l+ m13n31 m1inl2-r m12n22+ m13n32 m11inl13+ m12n23- m13n3
m21inllr m22n21- m23n31 m21nl2- m22n22) m23n32 m21nl13- m22n23- m23n33
m31nll m32n21+ m33n31 m31nl2- m32n22) m33n32 m31nl13+ m32n23- m33n3

Matrix representation & linear transformations

The following set of equations:
M1IxXx+ml12xy+ml13xz=A
M21xx+m22xy+m23xz=B
M31xx+m32xy+m33xz=C

is equivalent to the matrix equation that follows:

mll m12 ml X A
m21 m22 m23|-|y |=| B
m31 m32 m3 z C

It is also equivalent to the following vector equations
P=(m11,m21,m31), Q=(m12,m22,m32), R=(m13,m23,m33)
X=(xy,2)

D=(A,B,C)

D=X+(P,Q,R)

This meanghatmatrix can be used, amonggherthings, to represemstystems of
equations, but also a change lasis. Look back on the vector mathematics
chapter and yowill see that D=X(P,Q,R)literally means'transform X, which is
expressed in PQR space, in whatever space PQR is expressed in (could be ik
space for example), the answer is labeled D."
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The matrix form can also be written as follows:
MxX=D

This is also callethelinear transformation of X by M. In this case, ifhe matrix
M is invertible, then we capremultiply both sides ofthe equality by M., as
follows:

M-IxMxX=M-1xD

And, knowingthat Mr1xM=I (and thatmatrix multiplication is associative as we
saw before), we substitute into the above:

IxX=M-1xD
And knowing that X=X, we finally get:
X=M-1xD

That is avery elegantefficientand powerful way of solving systemseafuations.
The difficulty is of coursefinding M-1. Forexample, if weknow M, D but not X,
we can use the abovefind X. This is whashould be used to solve question 3 in
chapter"Alcoholism anddependance”. For 3graphics people, this the single
most useful application of matrix inversion: sometimes you haym®iat in ik
space, and you want to express themadn space. However, you doatiginally
have ijkexpressed in pgr space, but you have pgr expresg&dsipace. Youwwill
then write the transformation of a point from pqr spacgktepace, theifind the
inverse transformation as just described and then inverse trarts®rpoint to
find it's position in pgr space.

Another very interestingaspect is as follows. If we have a point P to be
transformed by matrix M, and then by matrix N. What we have is:

P'=MxP

P"=NxP'

By combining these two equations, we get

P"=Nx(MxP)

However, by associativity of matrix multiplication, we have:

P"=(NxM)xP
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If for instance, weplan to process a greatany pointsthrough these two
transformations in that particularder, it is a greaime saver to be able to first
calculateA=NxM, and then simply evaluai'=A xP for all P's, instead ofirst
calculating P' then P". limear transformations terminology, A is said to be the
linear combination of M and N.
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Affine transforms

Introduction

As of now, we have seen linear transformations. Linear transformations can be
used to represent changes of basis. However, they fail to take into account possible
translationwhich is oftop priority to 3d graphics. Aaffine transform is, roughly,

a linear transform followed by a translati@r preceded, though it is mouseful

for 3d graphics to picture them as being followed by the translation instead).

Affine transformations

A simple proof can be used to demonstrétat a 3x3matrix cannot be used to
translate a 3d poinGiven any3x3 matrix A andhe point P=(0,0,0), thenxA
P=(0,0,0), thus the point is untranslated. Itmerely rotated/skewed/stretched
about the origin.

However, there is a neat trick. A linear transform in 4d space projected in a
particular fashion in 3dpace is amffine transformation. Without going into the
details, a 4x4 matrix can be used to modeaffine transform in 3d. Thenatrix

has the following form:

m1ll m12 m13 Tx
m21 m22 m23 Ty
m31 m32 m33 Tz
0O 0 o0 1

The (rnj) 3x3 submatrix ighe nomal rotation/skew/stretch (thénkar transform
we studied previously). The (Tx,Ty,Ta)ector is added to the point after
transform. A point (x,y,z) to be transformed into (p,q,r) is noted:

ml1l m12 m13 Tx || X p
m21 m22 m23 Ty | |y _|a
m31m32m33 Tz | z| |r
0 0 0 1 1 1
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Affine transform combination and inversion

The most straightforward way to compute &fitne combination or inversion is to
write down the 4x4 matrices and perform thatrix operations on therfhis will
yield the correct results. It &so possible tgroceed in adifferent way, as
presented here.

Let anaffine transform be represented by the (M,T) couple, where M is the 3x3
linear transform matrix and T tke 3d vectowhich isadded after the Nhatrix is
applied. Then, the affine transform U of vector V can be written as:

MV+T=U

If we want tofind the inverse transform, wevant V as a function of USimple
matrix arithmetics tells us the following:

MV=U-T

v=M-LuU-T)

v=M-lu-m-11 (distributivity of matrix multiplication over matrix addition)
Hence, the inverse of affine transform (M, T) is ivM-1T).

Affine transform combinations can be computed gmnalar way. Let's assume we
want tofind the affine transform U of V by (M,T), then thaffine transform W of
U by (N,S). This means:

U=MV+T W=NU+S
W=N(MV+T)+S
W=NMV+NT+S
W=(NM)V+(NT+S)

Thus, the combination of (M,T) followed by (N,S) is simply (NM, NT+S).

Exercise
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Q1- Assume we havéhree points P={P1, P2, P3} in 3ahd the three points
Q={Q1, Q2, Q3} also irBd. These points are read fromspeecial device and their
real location in 3d space is known with very good precigiote:this meanshere

IS no perspective distortion our data). We know that the pointaRd Q are the
very samepoints, except that they're viewed from a different locafibis means
that the points in Q are the points in P transformeddogeaffine transform A.
However, we do not knowhich points in Qcorrespond tavhich points in P. (ie,
Q1 isnot necessarilyhe affine transform ofP1, itmight bethe affine transform of
P2 or P3). Yowan assumthat the points P1, P@&nd P3 form a nondegenerate
triangle whose sides all measure a different length.

Q2- We haveoughlythe same problem as @1, except now wedve n>3 points
P=(P1, P2, P3, ..., Pand the corresponding Q=(Q1, Q2, Q3, ..., @an you
find a way to compute theffine transformwhile minimizingerror?(Warning - this
is difficult.)

Answer

A- First step is todetermine whiclpoint in Q correspond tavhich point in P.
Since they'rehe same points viewed from different angles, we can assume the
linear transfornmpart of theaffine transform is orthogonal, therefore it preserves
lengths and angles. We can tisat tofind which pointsshould be associated. To
this purpose, let u=P2-P1, v=P3-P1. Théind the i, k suchthat |u|=|Qj-QIi|,
[v[=|Qk-Qi|. Since we assumtee sides ofthe triangle aveall different lengths,
there isonly one i,j,kwhich will work. Wecan simply tryall 6 combinations until

one works. Then, we know that P1 correspond®itoP2 corresponds to Qj, P3
corresponds to Q)j.

Now, let R1, R2, R3 be Qi, Qj, Qlespectively (this is teimplify notation abit).

We need a third vectowhich wegenerate as followd.et w=wv. Note that, as

seen in the last section, u, v and w are vectors and therefonetaaéfected by
translations. Let the affine transform A be represented by (M, T) a 3x3 matrix and a
3d vector. Let p=R2-R1, g-R3-R1 and kep

Then, we have that p=Mu, g=Mv, r=Mw (prove it, especially the last one).
This can be re-written as
M(ulviw)=(plalr)

where (u|v|w) denotes the 3r&atrix formed by takinghe vectors u, v and w and
putting them in as column vectors. Then, we can compute W by calculating

M=(plaiulviw)l ()
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Now we have computed the Matrix. We need to compute thevEctor. We
know that R1=MP1+T, hence T=R1-MP1 and we are done.

A2- The general outline similar to A1, except that at step (*), insteadusing
the conventionaimatrix inversion, we need a so-called pseudoinverse matrix,
denoted N, which is

M*=(MTM)-IMT

This matrix is a generalization ¢iie conventionahatrix inverse. Itminimizes
meansquare error in overconstrained sete@fiations like we have here. See [2]
for more information on thisopic. Note thatfinding which Qicorrespond to
which Pj is slightlymoredifficult, but asimilar method can be used. Alsote that
the T vector should be computed fal pointsand then averaged toinimize
error. Additionally, we were generating a w veatthich was the cross product of
u and v.Now wemight require something analogous to generaténearly
independent component eldee matrix will be degenerate anshversion will be
highly error prone. This especially if the points are suspected to be coplanar.
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Applications of linear
transformations

Introduction

In this section we will discudkie applications othe linear transformatiotheory

we saw in the previous sections. When doing 3d graphics, the usual situation
occurs. We have a description of one or more objects. We have their locations and
orientations in space, relative to some point of reference. We move them around,
rotatethem,usuallyabout their own coordinaty/stem. The cameraight also be
moving,rotating and such. Ithat case, it itkely that we have anorientation and
position for the camera objeitself. We would also likehat theeye points in the
direction of (0,0,1) in camera space, and that up be (0,1,0) in camera space.

Orientation and position will be given by affine transform matrix. The (ﬁr)
submatrix gives orientation and the 4th column has the translation vector.

World space, eye space, object space, outer space

First off weare going to require global system of referenceor all the objects.

This is usually calledWorld space'. An affine transform that describes an
object's position and orientatiasuallydoes so in relation to world space (this is
generallynot true for herarchicalstructures, as weillvsee later)This introduces

a new concept; a matrix A, representingaffime transform that takes asbject

from space M to space N (in our example, M is object space and N is world space)
is usuallynoted Ay _\,. This hasthe natural tendency toake us combine the
affine transform from right to left instead of left to right, which is correct.

The mostypical example is as follows. We havedject and itaffine transform
Aworid_object W€ also have a camera position and orientagigen by Gyoq.
In that case, thérst thing we want to do is invethe transform 4.
cameratO findthe G mera wong transform. Then you W be transforming the points

I:}I in the ObjeCt with QamerarWorIdxAWorldkObjec?(pI:MCamerar Objec%pl.

Camera

As a helper, notice that the little arrows make a lot of sense, as shown below:
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Camera- World, World— Object, which concatenatesntuitively to Camera-
World -~ Object or sirply Camera-Object. Thus, the above transformation
transforms from object space to camera space directly.n@nely calculates
IVICameraf Object:CCamer&WorIdxAWorIdkObject and multiplies all Pi's with is.

Transformations in the hierarchy (or the French revolution)

It may be useful to express an object A's position and orientation relative not to the
world, but to som@ther object BThis way, if B moves, A moves along with it.

In plain words, if we sayThe television is resting 2 centimeters abtihneedesk on

its four legs"”, thenmoving the desk doesot require us to changeur "2
centimeters above the desk" position - it is still 2 centimeters above the desk as it is
moving along witithe desk (carefuiot to drop it). On the othérand, if we had

said "The television is fineter above the floor" and "The desk is 95 centimeters
above the floor", and then proceednove the desk up 1 meter, then the position

of the desk is "1m95 above the flooRtdditionally, we have to edihe position of
thetelevision and change it to "The television is 2 meters alh@véoor”. Notice

the difference between these two examples.

This can be implemented vesegsilythe following way. Make anaffine transform
thatdescribes orientation and position of television in relatiaine¢odeskThis is
called Ay teievision 1hen we have an orientation and position for the dpgbn

by Byoria_pesk NOtice thathis lastaffine transform is relative to world space. We
then of course have the mandatogy, . cameraWhich we invert tdind the G, era
_wora transform. We then proceed to transfoaih points inthe television to
camera space, and alalb points fromthe desk to camera space. The former is
done as follows:

CCamer& World>< BWorld ~ Desk XADeskk Television>< I:}I :

Notice again how the arrows concatenatieely. The points on the desk are
transformed with this:

CCamer& World>< BWorld ~ Desk in :

Again, the arrows make all the sense in the world.

Some pathological matrices
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Rotating a point in 2d is fundamental. the exampleabove, wewish to rotate
(x,y) to (x',y") by an angle of b. The following can be said:

y'=sin(a+b)r x'=cos(a+b)r

With the identities sin(a+b)=sin(a)cos(b)+sin(b)cos(a) and cos(a+b)=cos(a)cos(b)-
sin(a)sin(b), we substitute.

y'=rsin(a)cos(b)+rcos(a)sin(b)
x'=rcos(a)cos(b)-rsin(a)sin(b)
But from figure 3 we know that
rsin(a)=y and rcos(a)=x
We now substitute:
y'=ycos(b)+xsin(b)
x'=xcos(b)-ysin(b)

Rotations in 3d are done about one of tlagis. The exactotation usedabove
would rotate about the z axis. In matrix representation, we write the x, yeisl z
rotations as follows:

1 0 0 cosB 0 -sind cosB -sin@ O
0 cosB -sind 0O 1 O sin@ cos® O
0 sin@ cosO sin@ 0 cosH 0 0 1
(x axis) (y axis) (z axis)

These matrices can be extended to 4x4 matrices simply by adding a rightmost
columnvector of (0,0,0,1) and a bottoraw vector of (0,0,0,1) (e.g. the 1 in the
bottom right slot is shared by the column and the row vector).
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If you want, you camlways specifyhe orientation of an objeasingthreeangles.
These ardormally referred to theEuler angles Unfortunately, these angles are
not too usefulfor manyreasons. Iftwo angles change witbonstant speed, the
objectwill definitely not rotatewith constant speed. Also, sometimegrablem
known asgimbal lock occurs, where yoguddenly loseone degree of freedom
(this looks ike the object's rotation in a directistops, to staréigain in another
strange direction). Furthermore, thaglesare notrelative to object coordinate
system nor world coordinate system.

Thus it is preferable to specibpject orientation with an orientation mati¢hen
rotation about a world@xis is desiredthe orientatiormatrix is premultiplied by
one of the above rotation matrices, amgen arotation about an obje@xis is
desired, the orientatiomatrix is postmultiplied byone of the above rotation
matrices. Notethat it is possible torotate about ararbitrary vector and/or
interpolate betweeanytwo given orientations when usinguaternions, which is
covered in a later chapter..
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Anothersimplification we usually makeomes from the fadhatlight bounces off
everything and eventuallgtarts coming from about all direction with a low
intensity. This isoften calledthe ambient light.Some further optimizations, more
hacks than actughysical observations, W make you go faster anstill look
good.

A simple perspectively incorrect projection

The most simpleprojection is an affinetransform from 3d to 2dsometimes
referred to agarallel projection. As an examplethe transform (x,y,2)(x,y)
transforms the point (x,y,z) in 3d to the point (x,y)2oh issuch a transform.
Another simple example is the (x,y;zjx+z,y+z) transform. The problem with this
is, no mattehow far or close in z the objest it always appeathe same size on
the screen. This, or a variant of this, is truealbof the parallelprojections. These
projections arecalled parallel because paralleles in 3d remain parallednce
projected in 2d. The image below is a parallel projected cube:

The perspective transformation

bi projection plane
[coordinates

polygon with
local coordinates

[i.])

BYEm |,

wiorld coordinates [x.y.2]
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The perspective transformation (or perspective projectior) is incredibly simple
once you know it, but it is oftenogd toknow where it comes from. We will put
to use some of the assumptions we previously stated.

The first assumption we madetlsat light goes in a straighline. This isgreat
because it will allow us to makeaximumuse ofall the linear math we have learnt
since high-school.

What we have to realize is, for thge tosee an objeclight has to travel from the
object to the eyeSince light travels in atraightline, it has to either gsetraight to

the eye or bounce off a few reflective surfaces before getting there. However, since
we areassuminghere are no sudteflective surfaces ithe environment, thenly
possibility left is that the light comes straight from the object to the eye. This line is
formally referred to as a projector.

Anotherway doing it igshe exact inverse. Starting from the esfegot aray in a
direction until it hits something. That is what you are seeing in that direction.

Obviously, we ar@ot going toshoot arnnfinite number ofays inall direction, we

would never evenstart generating an image if we dithat. The usual

approximation is toshoot afinite amount of rays spreadver an area in an
arbitrary manner.

There is another matter thag¢eds to be taken care of. In realibe image will be
sent to screen, paper or soateermedia. This mearthat, in ourmodel, theight
does noteach the eye, gtops at the screen or papamndthat is what welisplay,
so thatreality takes over for the rest of theay and carries real light rays from the
screen to the real eye$his poses a problem dinding where thelight rays
intersect the screen or paper.

Using the material inthe previous section, we able to transfornall objects to
camera space, where forward@s0,1) and up is (0,1,0) and thge is a(0,0,0).
We still donot knowwhere in space the screls. We will have to make a few
more assumptionghat it is in front of theeye, perpendicular to theye direction
which is(0,0,1),and flat. The distance wathich it lies is stillundecided. Waewill
just work with the constant k for the distance, then see vaha¢ of k interests us
most. Theeye is formallyeferred to as center of projection, and pane the
surface of projection.
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Since it is flat, ities on aplane. The plane equation in questiodxs-By+Cz=D

as seen before, where (A,B,C)=(0,0,1) is tlane normal. Thughe plane
equation is z=D. The distance from #e isthus D, and we want it to be k, so
we set D=k. Theplane equation is therefom=k. We set docal basisfor that
plane withvectors i=(1,0,0) and j=(0,1,0) and position W=(0,0,k). The plane
equation is thus (af,))+W. (a,b) are thdocal coordinates othe planeThey
happen to correspond to the (x,y) position ondla@e in 3d space becausg

for the plane is the same as (i,j) for the world.

The question we now ask ourselves is thigen apoint that isreflecting light, say
point (X,y,z), what point on screen should libethat crosses thdight ray from
(x,y,z) to the eye, which is at (0,0,0).

Here we will use the definition dlfie line in n space we mentioned bef@r@mely,
tV+W). Sincethe light ray goes from (x,y,z) to (0,0,0), it [garallel tothe vector
(x,y,2)-(0,0,0)=(x,y,z). Thus, we can set V=(x,y,z). (0,0,0) is a point on the line, so
we can set W=(0,0,0). The line equation is thus t(x,y,z).

We now want the intersection of the line t(x,y,z) with plenez=k. Setting t=k/z
(assuming z isionzero), wefind the following: k/z(x,y,z)=(kx/z,kxy/z,k). This
point has z=k thus it is in th@anez=Kk, thus it is the intersection of thlane z=k
and the line t(x,y,z).

Trivially from that, we find that the point (a,b) on screen ax&/gkkxy/z). Thus,
(x,y,z) perspective projects to (kx/z, kxy/z).

A small note on aspect ratiosSometimes, a screen's coordinatgstem is
"squished" on onaxis. In this case, it would be wise to "expawdie of the
coordinates to make it larger to compensatether screeeing squished. For
example, ithe screen pixels are 3/4 as widdahey arehigh, it would be wise to
multiply the b component of screen position by 3/4, or the a component by 4/3.
This can becomputedusing 2 different values of k instead thie same. For
example, use k1=k and k2=ratio*k. Then, the perspective projection equation is:

(x,y,z) perspective projects to (k&x/z, k2xy/z).

Referring again to physics, ontyie point gets to be projected to a particular point
on screen. Thais, closer objects obscure objects farther away. It will thus be
useful to do some form efsible surface determination eventually. Anotspecial
case is thaanything behindhe eyedoes not get projected all. Thus, if before

the projection, 20, do not projectThe image below is gerspective projected
cube. Compare with the parallel projected cube of the preceding section.
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In a similar line ofthought, the set ddll projectors of a sphere form a cone. The
intersection of the cone with the projectiplane can formany conic. Namely, a
hyperbola, an ellipse or a circle.tfie sphere contains the origin, the projection
fills the whole projection plane.

Other applications

By notlosing sight ofthe idea behindhe projection, one can accomplisiuch
more than what has been just described. ©®aeple igexturemapping. Often, a
polygon will be drawn on screen, but some properties of the polygooolsayor
example) changescross the polygon in 3d space. Wh@a happens, we want to
know what point from the polygon we are currently drawing.afplication of
this is texture mapping.

Texture mapping involves takingthe point on screefinding the projector that
goes through it anfinding the intersection ahat projectowith the polygon. We
then have a point in 3d space. However, ussally muchmoreuseful to make a
local 2d coordinatesystemfor theplane containinghe polygon andnake the
property a function of the location that 2d coordinatsystem. This is what | did
below in the snapshot of the screen from my math software.
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Let (u,v) be the coordinates on the projection plane, (p,q) the coordinates on the projected plane,
(Xp,Yp,Zp) and (Xq,Yq,Zq) the two vectors defining the plane, (A,B,C) the origin of that plane and the
projection x=k1*z*u, y=k2*z*v. Then, the intersection of the projection ray and the projected plane in
the projected plane's coordinate system (p,q) in function of the projection plane coordinate system
(u,v) is:

z=p-Zp+Qq-Zg+ C

klz u=p-Xp+ g-Xq+ A

k1l (p-Zp+q-Zq+ C)- trp-Xp+ g-Xq+ A  Equation A

k2-zv=p-Yp+ g-Yq+ B

k2 (p-Zp+ q-Zq+ C)v=p-Yp+ g-Yq+ B  Equation B
Now, let's solve for p then for g.

k1 (p-Zp+ g-Zq+ C)- trp-Xp+ g-Xg+ A

_ (kIuqgZg+kluC-gXq- A)
(k1:Zp-u— Xp)

p

k2 (p-Zp+ 9-Zq+ C)-v=p-Yp+q-Yq+ B

-(-k2v-Zp-A+ k2v-C Xp- Yp-kl-u-C+ Yp-A + B-k1: Zp- u— B-Xp)

4 (-k2-v-Zp- Xq+ k2 v-Zg- Xp— Yp-kL-u-Zg+ Yp-Xq + Yg-k1:Zp-u— YQg-Xp)
((Zp-A— C-Xp)-v-k2+ (Yp-C- B-Zp)-u-k1l+ B:-Xp - Yp-A)
(- Yp-Zq+ Ya:-Zp)-u-k1t (- Zp-Xq+ Zg-Xp)-v-K2+ Yp-Xq - Yg-Xp)
Similarly,

(kl-u-Zg B- k1-u-G Yg+ Xg-k2v-C— Xg-B- A-k2:v-Zg + A-YQ)
(-k2-v-Zp- Xq+ k2 v-Zg- Xp— Yp-kL-u-Zg+ Yp-Xq + Yg-k1:Zp-u— YQg-Xp)

((Zg:B- CYQ)-u-k1+ (Xq-C- A-Zg)-v-k2+ A-Yg - XQq-B)
(- YpZg+ Ya-Zp)-u-k1+ (- Zp-Xq+ Zg-Xp)-v-Kk2+ Yp-Xq - Yq-Xp)

As can be quitelainly seen above, the equations for p and q above are of the
form:

p=(Du+Ev+F)/(Au+Bv+C)
g=(Gu+Hv+l)/(Au+Bv+C)

Notice that the denominator is tisamefor both p and g. Thealuesfor the
coefficients Athrough | can be found bgxaminingthe snapshot of thmath
software screen above.
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Constant Z

There is onespecificcase thamight be especiallynteresting, given slowlivision
but fast addition. Theplane equationfor a polygon is Ax+By+Cz=D. The
projection is u=k1x/z, v=k2y/z. Then, vt x=uz/kly=vz/k2. By substituting
this into the plane equation ofhe polygon, wdind A(uz/k1)+B(vz/k2)+Cz=D.
Then, we transform as follows:

Z(AU+BV+C)=D  (A'=A/k1, B'=B/k2)

Let us examine what happens when Wk at aslice of constant z in the
polygon's plane.

k(A'u+B'v+C)=D
Mu+Nv+K=0 (M=kA', N=kB', K=C-D)

This is a line equation ifu,v) spaceThis meanghat, assuminghon degenerate
cases, a constantsiice ofthe polygon's plane projects to a linetire projection
plane. Furthermore, andterestinglyenough, the slope of the lineirglependent
of z Therefore, for agiven polygon planeall the constant-ines ofthat plane
project toparallel lines orscreen. However, looking back at tAg+By+Cz=0,
taking a constant z, wget a line equation of and vy, therefore, the intersection of
a constant z plane with the polygon plane is also a line.

Now let's examinghe projection equation. Let assumehat wewish to project
everything that's on gpecificconstant-z line of the polygon. Then, the projection
equation is simply u=Px, v=Qy, where P=k1/z, Q=k2/z, constants.

This is what it all boils down to. In any polygon, there are lines of constant z. If we
want to texturemapthe polygon, wenly need to findheselinesand drawthem

on screenmerely scalinghe texture for suclines by aconstant.Sinceall these

lines are parallel onscreen, it is possible tind the slope the line on screen that
will yield a constant z on thpolygon's plane, and theltaw to the screeansing
these ascanlines. One has to be carefulctiver eaclhpixel, but that is not too
difficult.

As an example, a wall'sonstant-zlines are vertical once projecte@assuming
we're looking at it upright). A floor azeiling'sconstant-dinesare horizontal once

projected.This can be exploited ttexture map floorsceilings and wells very
quickly.

Texture mapping equations revisited
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We derived théexturemapping equations usirige intuitive mathabove, and got
nasty looking rational expressions with even nastier coefficjgrgsconstants A,
B, C, D, E, F, G, H and. In practice itmight be useful tdry to find an efficient
way of computing these constants.

There is a cleveway to calculatéhese constants, bfitst we have to write down
a few properties. First let us obsertleat our texturanap is an affine mapping
from our (x,y,z) 3d space to the (p,q) 2d texture map, which means that:

1- p=PXxx+P2xy+P3xz+P4
0=QIxx+Q2xy+Q3xz+Q4
(for some P1, P2, P3, P4, Q1, Q2, Q3, Q4).

Second, assumhat theplane equation ofhe polygon to béexture mapped is
given by

2- Ax+By+Cz=D (where (A,B,C) is the plane's normal, of course)

Third, write down the perspective projection:

3- (u,v)=(k1x/z,k2x/z)

From 3, get (x,y) as a function of u, v and z:

3a-  (x,y)=(uz/kl, vz/k2)

Substitute x and y into the equation we had in 1 and 2 to get:

4- p=Pluz/k1+P2vz/k2+P3z+P4
0=Qluz/k1+P2vz/k2+P3z+P4

5- Auz/k1+Bvz/k2+Cz=D

Now divide 4 across by z, get:

6- p/z=P1l/kku+P2/kxv+P3+P4/z=R&u+R2xv+P3+P4/z
0/z=Q1/kxu+Q2/kxv+Q3+Q4/z=Sku+S2xv+Q3+Q4/z

From 5, find 1/z, get:

7- 1/z=(A/(Dxk1))xu+(B/(Dxk2))xv+(C/D)=Mu+Nv+O *

Look at 7and compute P4/z and Q4/z toyltiplying across by P4 and Q4
respectively:
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8- P4/z=P4&Mu+P4xNv+P4xO
Q4/z=Q&Mu+Q4xNv+Q4x0O

Substitute these two equations into 6 and get:

9- p/z =RXu+R2xv+P3+P4&Mu+P4xNv+P4x0O

=(R1+P&M)xu + (R2+P4&N)xV + (P3+P4O0)

=JIxu+JI2xv+J3 (**)
(similarly)
Q/Z =K1xu+K2xv+K3 (***)

Now examine %), (**) and (***). These arall linearexpressions in (u,v)rhis
means that:

. 1/z is linear in screen space (u,v) after the perspective transform
. p/z is also linear in screen space after perspective transform
. g/z is also linear after perspective transform

Which leads us tthefollowing conclusions: we canterpolatelinearly 1/z across
the screen for a polygon, amidat will be perspectiveorrect. Wecan linearly
interpolate p/z across the screen for a polygon,tiaadwvill also be perspective
correct. Wecan interpolatéinearly g/z across the screen for a polygon trad
will also becorrect. Then, weanfind the (p,q) texture coordinate ahytexel as
follows:

p= (p/z) / (1/2)
a=(a/z) / (1/2)
A simple quotient of our linearly interpolated values.

This simply allows us tasemaybe already existing linegaterpolation routines to
figure out the perspectiveorrect texturemapping, with only a siple tweak
added.

Bla bla
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Otherapplications can also be foundth® theory of the perspective projection. A
popular application is fothe rendering of certain types of space partitions,
popularly referred to as voxel spacggartwith ashort vector in the direction you
want to shoot thdight ray, andstart at theeye. Move inshort steps in the
direction of thelight ray until you hit amnobstacle, and when yado, color the
screen point with the color of the obstacle you hit.

Basically, everything flows from the idea of this projection.

Reality strikes

In reality it is impossible t@hoot enough projectors through points to cover any
area of the projection plane, no matter lsmall. The compromise is to accept an
error of about ongixel, andshoot projectorsnly throughpixels. This means you
might entirely missthings that project tosomething smallethan a pixel, or
incorrectly attribute them a whopexel. These details becormaportant inquality
rendering. Inhat case, steps have to be taken to ensursubgtixel details have
some form of impact othe globaloutlook of theimage. Different techniques can
be used which will not be described here.

Another thing we're going to do asly project the vertices dinesand polygons

and use the theorems we fousaklier to figureout the aspect of the projected
object. Forexample, when projecting a trianglee projection is the triangthat
passes through the projection of the vertices of the unprojected triangle. However,
these projected vertices will very likalpt fall on integerpixel values. In thisase,

you have the choice of either rounding or truncating to the ngmaxektor taking

into accountsub-pixel accuracyor vertices in your drawing routine. The former
can be esily done, the latter is emuch more involved topic which will not be
discussed.

The state othings as theyre at the moment this writing makeghe texture
mapping equations a liho expensive at 2 divisionzer pixel. Onmost processor
today, division is usually significant§tfower than multiplication, andultiplication
itself is significantlyslower than addition and subtractiofhis is expected to
change in the near future however. In thean timeone can use interpolations
instead of exact calculations. These are discussed in the next section.
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Note that the operations=A/C and Y=B/C can be replaced by the operations
T=1/C, X=TxA, Y=TxB. This essentially replaceés/o division by one division
andtwo multiplications, which can sometimes be actutdister. This exploits the
fact that the denominators are tame, just as itexturemapping. Additionally,
the T=1/C computation can beplemented using &okup table. Odogarithm
tables can be used, by notitigat acb=exp(log(a)+log(b)) and a/b=exp(log(a)-
log(b)), replacing amultiplication or division bythree lookups and an add or
subtract.All these tricks have been used at stime orother.Theyall have the
disadvantage of being less precise and taking up memamneover, as CPUs
become faster at math, these methodaataally slower than a normédlvision
operation (examplePowerPC). As such, these methods quékly becoming
obsolete, except on legacy hardware such as all PC's which use Intel CPUs.
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Interpolations and approximations

Introduction

Frequently in computer graphics, calculations regoibenuch processingower.
When this problem arisemany solutions are at hand. The most straightforward
solution is to completelyorget about whatever causes teagthy calculations.
However, thamight not besatisfying.The second most straightforward solution,
in a certain sense, is tget faster hardwarm@nd contend with slow@mage
generation. Thastill might not besatisfying. If this ishe case, thenly solution

left to us is to approximate.

Generally speaking, given a relativelyjooth function of x over fnite range, it is
usually possible t@pproximate it with another, easier to compute function over
the same range. Ofourse,this will generate some form of errddeally, we
should pick the approximating function astimimizethis error while conforming

to whatever constraints weayimpose. Howevenninimizing error is notalways
straightforward, and it is alsosually preferable tdind a goodapproximating
function quick than the best approximating function aftmmplicated
computations. (In the latter case, waght as wellnot approximate.) Eor
computation is a rather complicated topic, and | do not wish to get involved with it
in here. For the moréormally oriented reader, one populdefinition of error
between f(x) and g(x) i&f(x)-g(x))2dx, the integral is to be taken over thirval
over which g(x) is to approximate f(x).

One of the more popular type of approximating functiongakgomials,mainly
because they camsually becomputedincrementally in a vergheap and exact
manner. Fourier series agenerallynot useful because trigonometric functions
cannot be computegery quickly. A very nice way of generating an approximating
polynomial is touse the Taylor series of the function we want to approximate,
assuming we have an analytical form of the said function.

Polynomials Wl be used to approximate everything from squarets to texture
mapping to curves.

Forward differencing
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Forward differencing is used to evaluate @olynomial at regular intervals. For
example, giverthe polynomial y=&x+b, which is a line,one might want to
evaluate it at every integer value of x to draw a line on screen.

We must of coursdnitially compute y(0)=a0+b, or y(0)=b.But then, we can
exploit coherence Coherence is somethirtigat occurs just abowverywhere in

computer graphics, aneéxploiting it can tremendouslgut down on the
computations.

The next value ware interested in is y(1). But(1)=y(0)+y(1)-y(0). (Notice that
the y(0)'scancelout). However, y(1)-y(0)=a. Thus, y(1)=y(0)+a. Furthermore,
y(2)-y(1)=a, thus we can add a to y(1l)iitw y(2) and saon. Generally speaking,
y(n+1)-y(n)=[a«(n+1)+b]-[axn+b]-=a.

This extends to highesrder polynomials. As an example, let's do it osexond
degreepolynomial, and in anoreformal manner. Wevill suppose a stegze of k
instead of 1 for more generality, and the following generic polynomial:

y:Ax2+Bx+C

First, let's find y(n+k)-y(n) as we did before:

y(n+K)-y(n)=[A(n+k2+B(n+k)+C]-[An2+Bn+C]
=[AnZ+2kAn+AkZ+Bn+kB+C]-[AnZ+Bn+C]
=2kAn+AkZ+kB

Let's call thatlast result dy. Thus, y(n+1)=y(n)+dy(nlNow theproblem is
evaluating dy(n)However, dy(x) isitself a polynomial(first order; aline), so
forward differencing can also be applieditoWe thus need dy[n+Kk]-dy[njyhich
is simply 21€A.

Concretely, this is what happens. Let's say we haveotireomial %X+2x+3 with a
stepsize of 4over the range 3-1Mclusively. Wethus have A=1, B=2, C=3. We
calculated dy(x) to be 2kAx+AekB=2*4*1*x+1*4 2+4*2=8x+24.

First of all wecalculate thanitial valuesfor y and dywhich are y(3)=18 and
dy(3)=48. The incremental value for dy is 2kA=32. Then, we proceed as follows:

Value of...
X y(x)  dy(x)
3 18 48

(as initially calculated - now add dy(x) to y(x), 32 to dy(x) and 4 to x)
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The division bytwo can be accomplished with a bit shift, and subtractiosually
fairly fast on anyCPU. Using x=#+b2+c2, we carfind 1/sqrt(x)muchfaster than
otherwise.

Taylor

The picture above demonstrates what happens when one approxineateshat
varies smoothlyacross faces with a Taylor series. TUpperhalf of the picture
shows a square favhich the intensity of a pixelx,y) is 1/x. The leftmospixels

have x=1 (intensity 1), and the rightmost pixels have x=3 (intensity 1/3). The lower
half showstwo Taylor approximations. The first Taylor series expansion was done
around x=1, the Taylgpolynomial isthus 4-6x+4%-x3. This corresponds to the
lower left square. As can be seen, nearldfeedge, the Taylor series mearly
perfect. Near x=2, though, it gobaywire. Thebottom right square is &aylor
series expansioabout x=2 (thepolynomial is2-3/2x+1/2¥-1/16x3). As can be
seen, it is much closer the real thing, but thatsly because 1/x becomes more
and more liear after that point. Buthingsthat are liear after the perspective
transform are the exception rather than the rule.

The moral of this story ithat if two facesare next to each otheandthat the
shading (or any other property) isreally a continuous function, but we
approximate it using Taylor serieboutarbitrary points, it isvery easy to get
something that does not look continuous at all.

Thus, it would be unwise to do a Taylor series expansiaextéire mapping
equations, or Phonghading andhelike. Notethat a property thataries with 1/x
is not a rareghing in computer graphics becauseh& perspective transform, thus
the example is very relevant.

A theorem ofanalysisthat interests us is dellows. Given n points ithe plane
(assuming none hawbe same xcoordinate), there is a uniqymlynomial that
passes throughll these pointsThis polynomialcan be found usintpe linear
mathematics wavere using previouslyHere follows an example with aecond
degree polynomial.
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Let'ssay we want to finthe quadratipolynomialthat goes through thpoints
(x0,y0), (x1,y1) and (x2,y2). We know thpolynomial is of the form
Ax2+Bx+C:y. We rewrite all these constraints as the following equations:

Ax02+Bx0+C=y0
Ax12+Bx1+C=y1
Ax22+Bx2+C=y?2
This can be re-written as the following matrix equation:

x02x01 Al [y0
x> x1 1B |=yl
x22x21 Cl 2

Which can in turn be re-written asxX=Y. Notice that Xand Y are constant.
Then we solve for A, writing

A=X-1xy

Different types of constraints can pat on thepolynomials orits derivative(s),
yielding different types of polynomialsThe subject of interpolation is quite
extensive and will not be fully discussed here.
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Polynomial Splines

Introduction

In this section, | will have to assuméasic knowledge of calculus. Nateat the
topic of spline is rather broatience onlythe basicswill be covered here. For a
more detailed discussion, one can see [5].

Sometimes we havaanycontrol points (10, foexample)that we want to use to
generate an interpolatipmplynomial. However, wemight not want touse a 10th
degree polynomial for several reasons. They're hard to evalUdtey're
numerically unstable. They tend to oscillate wildly between control points.

To resolve this, we make lower degree interpolgtignomialsfor each section
of the curve.Typically, polynomials ofdegree 1 (lines), 2 (quadratics) or 3
(cubics) are usedPolynomials ofdegreehigher than 5are unwieldy andlso
sometimes exhibit undesirable behavior.

Basic splines

A spline will be defined by its type and a listaaintrol points of the form {p1, p2,
p3, ...,pn} wherepi=(xi,yi) somepoint in 2d space. The type can bampte line
segmenjoining eachcontrol points, or something moocemplex like a Catmull-
Rom cubic spline. Notdhat a spline doesiot necessarilypass through all
interpolation points. It is even possiltlat a spline does npiass througlany of
the control points. We will examine such cases later.

We will start by arexample spline oflegree 1 that interpolates througlhcontrol
points. An example picture is shown below:
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A very important note: all polynomials are immCthat is, they can be differentiated
infinitely many times. Therefore, ibur spline ismade of onepolynomial, it is
inherently verysmooth. The problem isplines arg't exactlypolynomials, they're
polynomial segmentgluedtogether. However, if you loo&nly atone segment of
the curveexcluding its endpoints, then it's ireCTherefore, thenly thing that
might make it less thano€is what happens at the endpoints of curve segments.

To illustrate this, wewill now create a quadratic splimdich is inC1. Since we
will be using this spline repeatedly our examples, wewill name itthe Zed
splineThis is how we define the curve segment from pi] to p[i+1]:

1- the quadratic goes through pli]
2- the quadratic goes through p[i+1]

3- at p[i], the slope is theame as whatevéne previous spline segment hashait
point.

Assume the previous curve segment vyas\[i]x2+B[i]x+C[i]. Then, the
derivative of that curve segment is:

y'=2A[ix+B]i]
And at p[i], the derivative is:
yiI=2AliX[i1+B[i]=K *)

The new curve segment y;A[i+1]x2+B[i+1]x+C[i]. It goes through p[i] and
p[i+1] hence:

yliI=AlI+1]x[i] 2+B[i+1]X[i]+C[i+1]
y[i+1]=A[i+1]x[i+1] 2+B[i+1]x[i+1]+C[i+1]

Its derivative at y[i] is
y'[i]=2A[i+1]x[i]+B[i+1]=K (K comes from (*))

We can re-write these three equations as:

2
yi <XI> XI 1 Ai‘?‘l
= 2 .| B.
Yita <X|+1> Xpq 1)) Tiet
K 2x 1 0||C

¢

Then we can solve for the (A,B,C) vector.
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There isstill the question of generating thery first spline segment, sinteere is
no such thing as "previous spline segment's slopgliit (we'll have ahardtime
computing K). One solution is to let the first spline segment be a quatthaitic
interpolates through p[1], p[2nd p[3] exactlyThen the second cunsegment
will maintain the same slope athe first curve segment pi2], and interpolate
through p[2] and p[3].

Parametrized splines

As of now, oursplinesare functionsthatis, they cannot curl backwardery
easily. Infiniteslopes arempossible.That andotherthings lead us to parametric
splines.

Right now, we have y as a function of x. Wél wmow replacehis with y a
function of t, and x a function of t. Then we pdditpoints(x,y) for somevalues of

t and weget thedesired spline. Waise t as a&ariable name because it can
sometimes be useful to think tfe spline as an (x,y) pointoving in time. For
example, a spaceship's movement could possibly be described as
(x,y,2)=(f(t),g(t),h(t)), a function of time for each coordinate. The key point here is
that this allows us to extend splines to any number of dimensions elegantly.

The control points are now of the form (x,y,t) or (x,y,z,t), depending on the
number of dimensions w&ant. A parametric quadratic spline segmeri2zdn for
instance, would be something of the form:

X=At2+Bt+C
y=At2+Bt+C

We just take each componentlividually and make it a spline as a function of
time. For example, if we havehe control points {¥o,zo0,to) (X1,Y1,21,t1), ...,
(Xn,YnyZn,tn). Then, we look at x as a function of t, amdke it a spline with the
control points (%t), (X1,t1), (X,t2), ..., (%,1,). We do thesamefor y as a function
of t, with the control points {to), (Yi,t1), ..., Ok t), andsimilarly for z as a
function of t.

Uniform splines
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Uniform splines are a special breed of splines which the control poimegyatarly
spaced in a special wayhatis, a spline othe form (x,f(x)) where the control
points are (0,y0), (1/(n-1),y1), (2/(n-1),y2), ..., (1,yn) eaed uniform.Notice
that the control points x components are uniformly distributed between 0 and 1.

Uniform splines have speciases. When we want 8pecify anobject's position at
an instant with a parametric spline, we want to be abdpeoifythe t component
exactly. However, when we're more interestedhm shape of thspline, the t
component matters less and we use uniform splines.

Now look back at the equationarkede for the Zed spline &w pages back. In
the case of aniform Zed spline, we carsubstitute thevalues x0=0 and x1=1,
since there are but two control points. Then we get:

Al oo 1t Y,
Bi=l111] -y,
c/ 010 K

oo1! [111 Yi
111 =00 1| =M =y,
010 100 K
A

B |=M-G

C

The columnvector G iscalledthe geometry vectorThe product of Mand G can
be viewed as a linear transformationtloé vector G, thus thmatrix M is called
the basis matrixfor the Zedspline. A basis matrix completely defines a uniform
spline type, and along with a geometgctor, it defines completely a specific
spline.

To illustrate a few additionngroperties, we need a second type of quadratic
spline. We will call itthe Bakerspline, and it is defined kiyvo control points pO
and pl, and a constant J as follows:

1- The spline interpolates through p0O
2- The spline has a slope of J at p0
3- The spline has, at x1, a slope of whatever slope the vector p1-p0 has

Now, let us see what these three constraint imply. First, let us notisinteit is
a quadratic spline, it is of the form y=AsBx+C. Hence, y'=2Ax+B. Then:

1- means that yO:A>a}Bx0+C. Since the spline is uniform, x0=0 and y0=C.
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2- means that J=y'(x0) or J=2Ax0+B or J=B

3- The slope of pl-p0 is m=(yl-y0)/(x1-x0)=(y1l-y0)/1. We want
m=y'(x1)=y'(1)=2A+B. Hence, y1-y0=2A+B

Combining these, we find that
2A+B=y1-y0

2A=y1-y0-J

A=y1/2 - y0/2 - J/2

We can write this in matrix form as:

11 1
Al |2 22y,
22 2
B = .
00 1N
C
10 0L
111
22 2
N=
00 1
10 0

N is thebasis matriXor theuniform Bakerspline.Now, given a specific geometry
vector for a Bakespline, maybe we wamgfeometry vector for a Zed spliménich

will generate the exasaime spline. This somputedusing a change of basis. Let

M be the Zed splindasis matrix, N ighe Baker splindasis matrix, V is the
geometry vector for the Baker spline and G is the geometry vector for the Zed
spline. K isthe (A,B,C) vector of theoefficients ofthe quadratics. Then weve
these equations:

K=MG or G=M1lK
K=NV

Therefore,

G=M-INV) or  G=(MIN)V
Let L=M-IN then

G=LV
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L is calledthe transitiormatrix from Baker spline to Zespline. This isall nothing
but linear algebra. L is a transform froome space to another space, there is
nothing more to it.

Examples

Herefollows an example calculatidor one segment of a parametnanuniform
guadraticspline. Note that this spline it of theZed type.This is merely a
parametric quadratic spline which interpolates through all 3 control points.

AR v | ()70 1k,
X% = () t, 1% Yo = ()% t, 1)K,
S ()7 g 1 L Yal [(t)% 1, 1)
= Lt y=K 2+ Kyt + K,

These are all the equations we need. Next, given the control points x1, x2 and x3, y1, y2 and y3 at
times t1, t2 and t3, we can solve for J and K.

Similarly for K. Now let us give ourselves sample control points:

=(0 2 1) y=(2 3 5) t=(1 4 5)
5] 5
12 12 e 52, 11 7
11 7 12 4 3
X = K=|-—
: : =52 7y, 10
7 10 12 4 3
3 3

Now, let us plot the éplihe:
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And now, an example Baker spline.
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The uniform Baker spline will be defined by its geometry vector V:

1 That is, p1=(0,1), p2=(1,3) and slope at pl is .5. Slope at x=1 will be the slope of p2-p1,

v=| 3 or 2.
11 1

A — - —— /1
2 2 2

B |= -3
0 0 1

C 5
1 0O

The spline is defined by the quadratic y=Ax"2+Bx+C:

y=.75%+ 5xt 1

75 x2+ Sx+12 /

Note that the spline goes trough p0=(0,1) and apparently has a
slope of 2 at x=1. This is verified because y'=1.5x+.5, thus y'(1)=2.

Now to get the equivalent geometry vector for a Zed spline. First find the transition matrix L:

G111
T T A e e
2
L=|00 1
001
100
100
1 0 0
L=/05 05 05
0 0 1

*

The geometry vector G for the equivalent Zed spline is:

Looking back at the definition of the Zed spline, this defines a spline that goes

1
G-=L |3
5
1
G=|225 also correct.
0.5

through (0,1) and (1,2.25), which is correct, and has a slope of .5 at x=0, which is
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Frequently used uniform cubic splines

A certain number of uniform cubgplines very usefubr various reasonsyostly
modelling curves. Some of these will be described here. The Hermite spline is
defined byfour two control points P1 and P2 and 2 slopes vector S1 and S2.
Bézier splinesare defined by 4control points P1 through P4 anghiform
nonrational B-splinesare alsalefined by 4 control points, with different
constraints however.

A few generalnotes before walive into the mainmaterial. Thesesplines are

cubics, hence they are of the foynrAx3+Bx2+Cx+D and thalerivative of such a

cubic is y'=3A%+2Bx+C. Often, constraints will hgut ony(x) or y'(x) for some

X, which will then be used to figure out the basis matrix for the spline.
Hermite splines

The hermite spline idefined bytwo control points P1 anB2,andtwo slopes sl
and s2 as follows:

1- The spline interpolates through P1
2- The spline interpolates through P2
3- The slope at Pl is sl
4- The slope at P2 is s2

Sincethe spline isuniform, P1=(0,y1) and P2=(1,y2). The geometegtor G is
(yl,y2,s1,s2). We re-write the four constraints using that:

1- y1=D
2- y2=A+B+C+D
3-s1=C

4- s2=3A+2B+C

We re-write in matrix form and solve for (A,B,C,D):
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-1

Al [0001]"[y1
Bl |1111| |y2
clloo1o0 |s1
D] 3210 |s2
Al [2 21 1][yn1
B| |33 2 1| y2
cllo o1 s1
D] |1 0 0 0]|s2

2 21 1

33 21
hermite-oo:l_o

1000

Mhermitels the basis matrix for hermite splines.

Bézier splines

Named after the French dude Pierre Bézier (for French people are dudes).
spline is defined by control points P1, P2, P3 and P4 as follows:

1- The spline interpolates through P1
2- The spline interpolates through P4
3- At P1, the slope of the spline is the slope of the P2-P1 vector
4- At p4, the slope of the spline is the slope of the P4-P3 vector

We re-write as mathematical constraints, noticing that P1=(0,y1), P2=(1/3,y2),
P3=(2/3,y3), P4=(1,y4), the slope of P2-P1 is 3(y2-yl) and the slope of P4-P3 is
3(y4-y3). The geometry vector is G=(y1,y2,y3,y4).

1- y1=D
2- yA=A+B+C+D

3- 3(y2-yl)=C

4- 3(y4-y3)=3A+2B+C

3 and 4 can be somewhat simplified:

3-y2=C/3+D
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4- y3=B/3+2C/3+D

We re-write this in matrix form and solve for (A,B,C,D):

000 1!
[A] 1
oot Y
B 3 y2
Cllgtz, |»
D | 3 3 ya
1111
'A] [-1 3 -31]|[y1
B| |3 6 3 0/|y2
cl |33 00| y3
D/ |1 0 0 0f|y4
13 31
3630
bézier-733oo
1000
Convex hull

The convexhull of aset S is themallest conveset Csuchthat SIC. At this
point, we need a strictefinition of convexsets, then we can proexistence and
uniqueness of convex hulls.

We assume a definition of line segmbatween x and y, suchdefinition can be
made strict in the context of vector spaces over the reals. Thedetinisdsimply
as

L(x,y)={tx+(1-t)y|t[0,1]}

The “natraldefinition” of “L is the shortest path between x and y” wonll
when the integral is well defined only.

Definition: A set C issaid to be convei, for ALL x,y in C, L(x,y)JC. (le, Cis
convex if, for all pair of points, the line segment between them is contained in C.)

Definition: arbitrary intersection D=pS. D is the setsuchthat dID = 0illl,
dOS. Given $ and a non-empty I, D is uniqu@roof: assumehat D1=nyS,
D2=nnS, D1#D2. Assumewithout loss ofgeneralitythat d is in D1 but not in
D2. Since disin D1, then d isafl S. Therefore, d has to be D2, contradiction.
QED.) Such a set is minimal in the sense thag&Dor all i in 1.
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Definition: Convex hull. First assuntée universe U is convex (this tsue for

R". Then, the convex hull C of an arbitrasgt S islefined asnC,, where
K={C,} is the set ofall convex supersets of S. Since S isin U and U is convex, U
is an element of Kthus the intersection exists and is unique. It is misamal. All

we have to prove is that C is conv@&ut this is trivial, as weare about to show.
Take an arbitrary pair of points x, y in C. We have to ptbhaeL(X,y) is a subset

of C. Since x and y are in C, x and y have to begifo€Call a. Since G is convex,

this meanghatL(x,y) is in G, for all a. Therefore, L(x,y) is in CThis istrue for

any x,y in C, thus C is convex.

As an example, a triangle is itsvn convexhull. For a concaveolygon, the
convexhull is the smallest convex polygdhat completely includeshe concave

polygon.

Now on toconvex sumsA convex sum is a weighted sup..wy; suchthat
Y «Wiyi=1 and wis non-negative. A convex sum is so called becthesesulting
sum is inthe convexhull of its control points iy as we are about to prove. \Wd
here use a proof by inductidret usfirst articulate the proposition we asbout
to prove.

Pi=“The sum $=314<w;y; where the weights jware positive andum to 1llies
within the convex hull of the control points’y

P1 translates into ¥, where w is positive and w1, is in the convehull of v,
which trivially true.

The next step is to demonstrate thatl P.;. Now let usexamine R;.
Y i<t WiYi=D 14<iW,YjFWir1Yis.  Let K=Y 14w, We know thatK<l since all
weights are positive and add up to 1. We seale up Shy 1/K (callthat Q).
Then, by hypothesis of,RQ is in the convekull of the y through y. However,
Si1=KQ+Wis1yir1 and K+ wi;=1. Thus §; is on theline between Q and.y. Since
both Q and y; are in the convex hull of yhrough y.,, the line between Q ang.y
is in the convexull. Thus % is in the convexull. By induction, Pi igrue for all
I, which completes the proof.

Bernstein polynomials

The nth degree Bernstepolynomial, B(x) is defined by n+1control points yO,
y1,y2, ..., yn as follows:

Bn(X)=3 0C(i,n)X(1-X)™'y;  where C(i,n)=n!/[i!(n-i)!]

n! is the factorial of n, isX2x3x4x...xn. As an example, 6!=720. Aser the
definition above, C(3,5), for example, would be 5!/(3!21)=10.
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Catmull-Rom splines: a non-uniform type of spline

This spline type is defined as follows (giveyur control points P through R
(X0,Y0), (X1,Y1), (X2,¥2) and (%,ys), X are increasing):

1- The spline interpolates through,¥x).
2- The spline interpolates through,{x).

3- Thespline’sslope at ¥ (the second control point) is whatever slope lite
from the first to the third control point is.

4- Thespline’sslope at x (the third control point) is whatever slope the fireen
the second to the fourth control point is.

The spline segment thwefined isfor the [%,x;] segment. If asimilar spline is
defined with the control points,/>, Ps;, Py, then they Wi join at P, and their first
derivative vl agree, giving it esmooth appearancéVriting the restrictions
expressly in equation form, we get:

1- yleX13+BX12+CX1+D.
2- yzzAX23+BX22+CX2+D.
3- y'(X2)=3AX*+2Bxs+C=(Y2-Yo)/ (X2-Xo).

4- y'(X2)=3AX"+2BX+C=(y5-y1)/(X3-X1).
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Rendering

Introduction

Rendering is the phase where we do the actual drawing. There is a general
tendency to download this particutask to aslave graphicprocessor and leave

the CPU to do bettathings. However, it will ahays be usefudbr everyone to

have a general understanding of hinmgswork. And alsolikely is the fact that

we're going to need software renderers farhde more.And one last fact ighat

people have to write the software for the slave processor.

We will first study the drawing of a pointyhich will be used to draw other
primitives. Then we will studyines and polygons. Curved surfaces can also be
supported but will not bdiscussed. The curvemimitive that tend to be faster in
drawing are conics an@olynomials. However, someother forms of curved
primitives definitions are often preferred, mainly splines.

The point

A geometric point is a @imensionabbject. It could also bdefined very strictly
with neighborhoods and somesuch. However, thimigparticularly useful to the
computer graphics specialist. One thihgt we mustemember, though, that it
is impossible to display point onany mediumQuite simply, apoint has a size of
zero, no matter if thdefinition of size is lengtharea or volume. It cannot lseen
under any magnification.

What the computer graphics expasuallyrefers to as the point is trsnallest
entity that can be displayed dhe display device.These arenot necessarily
circular or rectangular things - and more often than not, they are slightly blurred.

We will refer to this point as pixel. We will also need to make a fevasic
assumptions. Generally speaking, pixelee of an arbitrary shape (often
rectangular-like), and amdigned in a venstructuredway onthe display device.

Note thatsome devices daot use this method dafisplayingthings, these are
commonly referred to as vector devices. There was an old Star Wars (trademark of
LucasArts | believe) game made with one of these.
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We will also very much likeixel to be aligned in aartesian planéke manner.
We generally assign pixeisteger position, and what®t exactly on a pixel has a
noninteger positiorBut what is thgosition of thepixel? That's anotheentirely
arbitrary matterGenerally speaking, we mightawt tosimplify the pixel'slocation

to its centroid. Also, there is tipoblem of axiorientation. For @ombination of
arbitrary and historical reason)e screen coordinatesigin is very usually
centered on the upptaft corner and goegositivelydown and right in hardware.
Operating sometimes hiddat from the usempplication and use a coordinate
system centered dhe lowerleft corner, and go posiely up and right, jusike
the usual cartesian plane.

The waythat pixels are storedternally isalso of importancesenerally speaking,
eachpixel is assigned a&olor, and thenumber ofcolors available per pixel is
defined by the number of bits allocated to each pixel. For instance, pigelchas

6 bits of color data to it, then each pixel can be one of 64 cdlrsn a'strange”
number of bitger pixel isused, it often happenbat thebits are spread in kess
intuitive way. For example, inthe 6bit case, instead of usimge byteper pixel

and wasting 2 bits per pixel, the system will likely store bit O of all pixels, then bit 1
of all pixels, then bit 2 ofall pixels,and soon. This is called a bit-plane
arrangement.

If the number of bitper pixel iscloser to 8, 16, 24 or 32, theome systemwill
allow what isgenerallyreferred to as a lear arrangement of pixelsor example,
if 8 bits are allocated per pixel, then one byte corresponds to one pixel.

It is generally acqated that with 24 bitper pixel, the human eyecannot see the
difference betweetwo very similarshades of theamecolor. (High end platforms
today use 16 bitper componenincluding a so-called alpha chann&y a
possibletotal of 64 bits, buthis is tominimize roundoff whencombining several
imagestogether, foinstance.) However, 24 biper pixel is roughly 1@millions of
colors. Thus, when using a mere 6 or 8 bits per pixel, sacrifices must be made.

One waythat the indstry has found is to makel@ok-up table. As amxample,
eachpixel is assigned a value from 0265 (for 8 bits), and the hardwaregisen

a lookup table of 256 color entries. Each color entry can contain a 16 or 24 bit
color forexample. Therthe hardwara@automatically substitutéhe propeentry in

the table for eaclpixel when it has to displashem. The lookup table is often
referred to as thpalette or color map.
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At any rate,eventuallyone needs way of identifyingcolors, either to select the
color mapcolors, or in the case of a 24 or Bi#s system, selec¢he pixel color.
There areseveral ways of doing thi3wo of themost popularmeansare RGB
colors andHSV colors. RGB is an acronym faed, green andblue. Colors are
specified by their red, green and blue contents. It is interestmgtédhatdisplays
usually donot use red, green aruue, but colors that arelose to these. The
colorsactuallyused by thalisplayswere selected tallow for abroader range of
colors.

Another populameans of selecting eolor is with HSV valuesThis is another
acronym that stands for Hue, Saturatieand Brightness (isrthat last one
obvious?) This model is more intuitive than the RGB model for most people. Other
models includehe CMY (Cyan, Magenta and Yellow) and Y{Quminance and
Chromaticity) models.

Writing to a specific pixels usually involves finding address and then putting a
value init. Sincememory is usuallymapped in a ondimensional fashion, device
pixels are mapped in an arbitranyay to memory. Usually, finding a memory
location for a pixel involves a multiplication. Howewvenjltiplicationsare typically
expensive, thus weight want tolook into that abit further.Let usassume a
800x600 display, with 8 bits per pixel and linear mapping.

A base address A has to tweenfor the top-leftmospixel (assuming origin is at
top-left). Then, the firstow of 800 pixelsvould be the next 800 bytes. Then next
row of 800 pixelsnvould follow and smn. Generally speakingpixel (x,y) for an
integer x and y can be found at memory location A+x+y*800. Nod¢some
systems will want to pad each row with a few bytes sometimes.

Multiplying once per pixel write is a bit expensive. Thareseveralworkarounds.
The first one is straightforwatslit hardware dependant. The secondassemes
that we access pixels in a coherent way (not totally random).

If the width of thedisplay device in pixels isnown in advance, theultiplication
can be removed th®llowing way. Saythe pixel to beaddressed is ahemory
location A+x+y*800. 800 is 512+256+32, thus wavé A+x+y(512+256+32) =
A+x+512y+256y+32y. However, 512%£2256=2 and 32=2 Thus, the pixel
memory location is A+x+%+28y+25. Note that amultiplication by apower of
two can be optimizedut with left shifts, whichare typically muchfaster than
multiplications.Let a<<b denote shifted left by b bits, thethe memory location
of the pixel can be expressed as:

A+X+y<<9+y<<8+y<<5.

Similar decompositions in powers ofvo ofvarious scalars can be found. The
problem with this ighat it requires thecalar (display device width in pixels) to be
hard-coded in the program.
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Anotherway of accessing pixels is by exploitiogherence. If we plane to access
all the pixels on given scanlinestarting from left to right, thethe following is
true.

Pixel at memorylocation A+y*width isthe leftmospixel on the scanline. The
second leftmost value the abovevalue plusone. The third one can be found by
adding one again, and dorth. Thus,accessing pixelshat areadjacent on a
scanline can be done in one add per pixel only.

Accessing pixelghat are on thesame column is similagxcept that<width> is
added each time to the memory location.

Lines

There are anumber of ways taraw lines. Generally, thegll boildown to the
same basic ideas, and have roughly compasg#eds. The algorithm presented
here is the onefklt hadthe besmixture of simplicity efficiencyandsmallsize. It
has the disadvantage béing lessxact than somether algorithms forlines of
rational slopes. We il first startwith special cases, then movertmwre general
cases.

The simplest lines to draw are the horizontal \aettical ones. As can beragined
easily bythe reader from the last section, startwith the topmost orleftmost
pixel, draw it, then either add 1 or <width>teemory location andraw the next
pixel. And so on, for the length of the line.

The next step up is angled line. Itthe line is nowerticalnor horizontal, then it
can be expressed gsmx+b or x=ny+c,with n=1/m and c=-b/m, whichever is
preferred. The representation one has to usehishever ofthe two has the
smallest m or n. This is to ensure that there alarge gaps between the pixels of
a line.Afterwards, wanitialize (x0,y0) to be one endpoint of thee. If we chose
y=mx+b, we should be usirige leftmost endpoint for (x0,y0). We draw (x0,y0),
then increment x, anadd m to y. Then we draw the new point. The extension to
the x=ny+c form is left to the reader.

Notice that the previous paragraph is simplapplication of forwardlifferencing
studied previously. The witty reader waasily imaginehe extension ahis to
higherdegreepolynomials. It is also possible &xtend incremental algorithms to
circles and ellipses, amongst others, but we will not go into this.

In some applications, such as polygon drawing, one of githex+b or x=ny+c
will be preferred even if the slope is greater than 1.
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Note that the topic of lindrawing can be extended mugctore than thisAnti-
aliased lines, lingvidth and patterns, endpoint shapealléopics that we will not
cover.

This algorithm hasthe nice property of being a specialcase of forward
differencing. It's also fast and has no comparisonthen so-callednner loop.

(Comparisons have a tendencyfltsh prefetch queues in CPUighich results in
relatively long delays in the inner loop).

However it has the disadvantage of accumulating rouedadf ateach newpixel.
This shouldnot be gproblem in generahut when utmost precision is needed, an
alternate algorithm which does not accumulate error might be considered.

The algorithmworks without any error accumulation(the only error is the
roundoff to the nearegtixel). The idea is as follows. We first obsethat the

slope m is a rational of the form a/b. Let's assume m is positive and less than 1. We
can make a special case for each of the 8 octants such that this is true.

Next, let'sassume gy is of the form N+c/b, where c is some integer between 0 and
b. Then, when adding the slope to the current ygeteN+(c+a)/b. However, now

we need to check whether c+a is more than b. If it is, then we rewrite as:
N+(c+a)/b=N+(c+a-b+b)/b=N+1+(c+a-b)/b. This meattat whenever c+a is

more than b, we subtract b from it and add 1 to N. fgikel coordinate in y that

we actuallydraw is N. (Thismpliesthat we're truncating y. If we want to round

off rather, we can ad@.5 to theoriginal ¥y, which will have the net effect of
rounding to the closest integer. The denominator can be doubled to avoid roundoff
in the .5). Pseudocode fthis follows (integer endpointse assumedhis can be
generalized to rational endpoints of course).

Let (x0,y0) and (x1,y1) be the endpoints of the line segment, such
that (x1,y1) is in the first octant relative to (x0,y0).

Let a=2*(y1-y0)

Let b=2*(x1-x0)

Let N=y0

Let c=(x1-x0)

for x varying from x0 to x1 by steps of one, do
putpixel(x,N)
addatoc
if c>=b then
subtract b from ¢
add 1to N
end if
end for

Polygon drawing
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Let usfirst define a fewterms, in anntuitive and geometric fashion. A polygon is,
as can be seen above, a 2d object with dediaited byedges. The edges die
segments, and there is a finite number of edges.

Polygons that do not self-intersect can be said to be edheexor concave The
polygon above iself-intersecting A convex polygon is one favhich the inside
angle at any vertex is less than or equal to 180 dedteesherpolygons aresaid
to be concave. Sometimes, it is stidt a particular vertex is concawehich is
not entirely correct, but rathemeansthat the insideangle atthat vertex ismore
than 180 degrees.

What interests us most is fillgdimitive. It is relatively easy tdraw a wireframe
polygon using only line drawing routines described previously (hidden line removal
then becomes a problem).

The star-shaped polygon shown abowveely interesting to us becausexhibits

the more interesting properties we waant polygons to have. The grayed areas

are considered to be inside the polygon, where the white areas are outside the
polygon. This meanthat theinner pentagon is considered todéside. Theule

for determining whether a point lies inside or outside the polygon is as follows.

To determine if a poirltes in orout of apolygon, draw a line fronthat point to
infinity (any direction, far far awayNow find the number of timeshat line
intersects the polygon edges. If itodd, the point isn, if it is eventhe point is
out. This is calledhe even-oddrule by the industry. It is recommenddtat you
try this withthe star abovandnote that it works no matter what point ypigk
and no matter what direction you draw the line in.

The basic idea ofthe line polygon drawinglgorithm is as followsFor each
scanline(horizontal ine onthe screen)ind the points of intersection with the
edges of the polygorabelingthem 1 through n for n intersections (it isrufte

that n will always be even except in degenerate cases). Then, draw a hdieontal
segment between intersections 1 and 2, 3 and 4, 5 and 6, ..., n-1 and n. Do this for
all scanlines and you are done.

Probably, you might want testrictyourself to scanlinethat areactually spanned
by the polygon. Also, there are a few things to note.

If the polygon is convex, there will always bely one span pescanline.That is
generally not true for concave polygons (though it can accidentally happen).
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Here is pseudocode for a polygon filling algorithm.

Let an edge be denoted (x0,y0)-(x1,y1), where y0 <yl. Edges also
have a "current x" value, denoted cx. Initialize cx to x0. One

should also compute the slope of all edges, denoted s, which is

(x1-x0)/(y1-y0) (we are using the x=ny+c representation).

Let IET be the inactive edge table, initially containing all edges

Let AET be the active edge table, initially empty

Sort the IET's edges by increasing values of y0
Let the initial scanline number be the yO0 of the first edge in the
IET

Repeat

While scanline >y0 of the topmost edge in the IET
Move topmost edge from IET to AET
End while

(*)  Sort AET in increasing values of cx

For every edge in the AET

If edge's y1 =>scanline, then remove edge from AET
Else add the slope "s" to "cx".
End for

For each pair of edge in the AET
Draw a horizontal segment on current scanline between
column "cx0" and "cx1", where "cx0" is the "cx" value
for the first edge in the pair and "cx1" is the "cx"
value for the second edge in the pair
End for
Until the AET is empty

It is of note that the linearked by(*) can be optimizedut. If the polygon is not
self-intersecting, we just need to make shee AET is properlysortedwhen we
insert a new edge into it.

It should benoted that edges that gvarallel to thescanline shouldot be put in
the IET. Youmight also need to clithe polygon to the viewponyhich can be
added to the polygon blitting code.
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Visible surface determination

Introduction

One of theproblems we have yet to address, when several olgeget to the
samearea on screen, how do you decideich gets displayed. Intuitively, the
closest object should be the one todisplayed. Unfortunately, this definition is
very hard to handle. We willsually saythat the object to beisplayed will be the
one with the mallest z value in eyspacewhich is a bit easier taork with. A
corollary of this isthat objectswith the largest 1/xaluegetdisplayed, thidatter
observation has applications which will be explained later.

Visible surface determination can be done in a number of ways, each has its
advantages, disadvantages and applications. Hidden line removal is used when wire
framesare generatedlhis might be usefulor a vectordisplay, but will not be
covered in here. Wen dealing with filled primitiveshere areseveral classes of
visible surface determination. There is also the question of object precisioce
precision, and more, these topics will not be discussed here.

Perhaps the mogttuitive visiblesurface determination algorithmtise so-called
"painter's algorithm”, whiclwvorks thesame way a painteloes.Namely, itdraws
objects that are furtheaway first, then draws objecthat are closer. The
advantage of this is it's simple. The disadvantagethatr@ writesseveral times to
some areas of théisplay deviceand alsdhat some objects cannot be ordered
correctly.

The painter's algorithm can be generalized tiheodepth-sorting algorithrahich
sort theprimitives from back tdront and then draw. The depth sortiggorithm
also resolves cases that painter's algorithm does not.

Another algorithm is space partitionitrges such as BSBinary space partitions)
trees. The advantage tfis algorithm is to generate @rrect ordering of the
primitives quickly and correctly no matter where the viewerhe disadvantage is
that it is hard to addny polygons to a scene thus rendered, or to deform it in a
nonlinear way. Approximations can be made.
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Yet anothemway of doingvisible surface determination is tlodass of algorithms
generally referred to as"scan-line algorithms". These algorithmtough
somewhat slower than depth sorting, have the advantage of drawing to each and
every pixel of the display device once and only once. Thus there is no rudeal to
the display inthe first place, and pixels anet written to needlessly. Incidentally,
this algorithm is very useful for display devices whereiihmossible or difficult to
erase or rewrite tpixels, such agrinters. The disadvantages #natit's slightly
slower, and usually quite more messy to code than a depth sorting algaigam.
visible surface determination becomes an integaatt of thepolygon drawing
routine in most casesaking ithard to download the polygon drawing code to
some hardware, or to make several versions of polygon drawing caalfefiant
drawing modes.

A very popularway of doingvisible surface determination is called z-buffering.
This works by storing the zalue whatever occupiespaxel for eachpixel. This
way, one can add negvimitives to a scene, visibkurface determination is just a
compare away. Incidentally, it is usually mubreefficient touse 1/avalues than

it is to use z values, since 1/z varies linearly but z does not.

Another algorithmworth mentioning ighe Weiler-Atherton algorithnwhich clips
primitives so hatthey donot intersect before drawing, and Warnock's algorithm,
which recursively subdividebe displayareauntil it cantrivially determinewhich
primitive to draw. These algorithms are fairly slow.

An optimizationthatcan be made tany visiblesurface determination algorithm is
back-face removal or back-face culling. This is basetherobservation thd&ces
that are facingwayfrom the observer

As of now, theonly algorithms discussed will biae depth sort and painter's
algorithm, along with z buffering and back-face culling..

Back-face culling

Back-faceculling exploits the observatiothat aface in aclosed polyhedron
always hagwo sides. One faces inside, and can never be seen by an observer
outside the polyhedron (ratha@bviously sincghe polyhedron is closed), toéher

faces outside and can be seen. However, if it is deterfthiaetheside facing the

eye isthe inside of the facéhat face wil assuredlynot beseen, because it is
impossible to see a face from the inside.
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Exchange z[i] and z[i+1]
End if
End for
Until f is clear

As can be seen, tradgorithm is exceedingly simpl&or small values of n (say,
n<10), this algorithm can be used and will be close to optimal. Howettee ligt
is very badlyorderedinitially, the sortcould take up to 4 iterations before
finishing.

Small improvements can be made tloe algorithmFor onething, instead of
always scanning ithe same direction (fronmthe firstelement tothe last), one
alternates directions, sorting an already clossottedlist is very efficient. The
loop will execute roughly n times (actually, it would execute k times n, where k is
some small constant). In the worse case though, it still executéiénations.

A second, more clever algoriththat workswell on numbers, ishe radix sort.
This sortcan be done ianybase (useful bases focamputer would be 2, 16 or
256, becauséney're powers ofwo). However, for the sake aimplicity in this
example, we will use base 10.

Using base n, rbuckets are createfin our example, 10buckets),labeled O
through n-1 (0-9 irour example). Thenthe numbers to beorted are put in the
bucket that corresponds to their lower digit. The buckets are concatenated, and the
step is repeated for the next lower digit. An souori] we get to thehighest digit,

at whichpoint westop.The result is a sortdst. Pseudocode igiven below for

base n. Not¢hat the ih digit of base n number z is (z di)¥n wherediv stands

for integerdivision, truncating off anfractions, and % is theodulo operator, or
remainder after division by n (a value from 0 to n-1 inclusive).

Let b[0..n-1] be n buckets, labeled 0 through n-1
Let z[1..m] be the m numbers to sort
Let D be the largest number of digits used

For foo varying from 0 to D-1 inclusive, do
For i varying from 1 to m inclusive, do
Put z[i] into its bucket, namely b[(z[i}/n foo yopn)
End for
Concatenate all buckets, in order from 0 to n-1, back into z
End for

Note thatdivisionand modulo operations, when done with lasedivisors, can
be implemented strictly with bit shifts.

This algorithm can be implemented wiikts or arrays. Lists ensurehat no
unnecessary copying #one, andallow buckets tayrow dynamically. This is not
so easily accomplishedith arrays, but the pseudocode belessentiallydoes
that. It only needs to be repeated for every byte in the numbers to be sorted.

Let i[0..256] be 257 indices, initialized to 0
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Let z[1..m] be the m numbers to sort
Then o[1..m] will be the m numbers once concatenated

Comment: The first step we take is to count the elements that will
go into each bucket

For j varying from 1 to m inclusive, do
Let foo be the bucket to which z[j] belongs
Increment i[foo+1]

End for

Comment: now compute the index at which buckets start

For j varying from 1 to 255 inclusive, do
Add i[j-1] to i[j]
End for

Comment: lastly, put the numbers into the bucket and concatenate

For j varying from 1 to m inclusive, do
Let foo be the bucket to which z[j] belongs
Put z[j] into ofi[foo]]
Increment i[foo]

End for

Other sortingalgorithmsthat might be ofinterestinclude the quick sort, heap
sort, insertion sort andmerge sort These W not bediscussed here, they each
have their advantages and drawbacks (for a full discussion, see [2]).

Painter's algorithm and depth sorting

As was previously mentioned, painter's algorithm assigns a z value to each
primitive, thensortsthem, then draws them from back to front. Objeltg lie
behindare then written over by objects thiat in front of them. Notethat, no
matter the scheme used to select thalme for an objectprimitives that have
overlap in zmay beincorrectlyordered. But there is worse. Note thethological

case below, where it inpossible togenerate a proper ordering for the three
triangles:
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In this case, it is necessary ¢at onetriangle intotwo parts and sort the parts
individually.

A way of handlingall cases is as follow#ssign a z value tall polygons equal to

the vertexbelonging tothe polygorthat has the largest z coordinat@ue in eye
space. Then sort as per painter's algorithm. Before actually drawing, we need to do
a postsort stage tmake surehe ordering is correct fgolygonsthat have z
overlap.

Assuming wesorted inincreasing values of z, it meattzat we needonly to
compare the last polygon with the consecutive previous polygonghfoh the
furthest point is in the lagtolygon's z span. Ondke last polygon is processed,
we will not touch itanymore (unlesshe last polygon is moved to sowiher
position in the list). Thus, we just consider liseto beone elementshorter and
recurse the algorithm.

The steps thashould be taken are &sllow (P and Qare the polygons we are
comparing).

1- Check whether the polygons x and y extent overlap on screen. If theygt,do
there is no need to compare the polygons. Otherwise, we are undecided (go to 2)

2- Check on what side of P's plaheeye lies. If Q lies entirely otinatside of P's
plane, Q is considered to be in front of P. Ii€3 entirely orthe oppositeide of
theeye in relation to P's plane, then P isramt of Q. If Q crosses P's plane, we
are still undecided.

3- Repeat 2 above, but with Q and P inverted.

4- Check if the polygons overlap on scrgéind whether the edges of the
polygons intersect)

Once a polygon has been moved inligte mark it sathat it is notmoved again. If
one of the above steps wouddythat apolygonthat has already been moved in
thelist should be moved again, then you will haveise the lastesort,clipping.
Cutting up the triangle into pieces (clipping) will be described later.

Of course, one need®t toperformall these tests they are deemed to be more
expensive than clipping-or instance, theonly tests one could do itest for
overlap in z, then x and y on screen, then check for step 2 and istill is
unresolved, simply clip the polygons and put the pieces where they belong.

When polygonordering camot beresolved, pick one of thievo polygons for
clipping planeandclip the othempolygon with it. Then, insert thevo pieces at the
appropriate positions in the list.
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The latter can be rewritten as
1/z=Mu+Nv+K
M=A/(Dp), N=B/(Dq), K=C/D

Thus, 1/z varies linearly across the (u,v) plangetlisplay device. Wheforward
differencing is applied, calculatiofsr values ofl/z are reduced to one add per
pixel, with a small setup cost.

Note thatvisible surface determination can be performed in a clever way Asing
Buffering (described in thantialiasing section).

Binary Space Partitioning

Let us assume we have the description of a scene. Let us cut the scene with a plane
P. (Thatis, choose @lanethatsplitsthe scene intowo hales.) The crucial point

in BSP is thaainything onthe same side athe plane P ashe observer camot be
obscured byanything onthe otherside ofthe plane P. Therefore, if we caplit

the space with plane P in a side A, in whidhe cameréies, and a side Byhich

is the otheside, then we can dragwerything in B then everything in A, and the
drawingorder between objects in&hd A will becorrect. Note that wetill need

to somehow determine what is the correct order within B and A.

B

Observer N @
o T
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In theexampleabove, we show the partitionipéane P with alottedline, objects
are rectangles arellipses, andhetwo areas are marked A and B. The observer is
the dark spommarked "observer". In this case, objects 1 amde2on the A" side

of the P plane, therefore itimpossiblefor them to be obscured layy object in

the B side (namely objects 3 and 4). Thigsus no matter where in Ahe observer
lies. The observer can be anywhere¢ha A region and objects 1 and 2 widver

be obscured by objects 3 and 4 for the observer.

However this isstill not sufficient. We still need to have drawing order for
objects in the A region and objects in the B region. Therefore, we recurse the
algorithm and splithe A region intdwo sub regions fowhich the ordering
becomes unambiguous and similarly for the B region, as seen below:

p2

| Observer - . @
e

p1 .

Now there are fouregions, A, B, C and D. Space is partitioned atrtieg by P.
Then, thetwo resulting subspaces are partitioned by pl p2dThis can be
represented by the following tree:

P

N

p1 p2

When we want t@et adrawingorder for objects 1, 2, 8nd 4, we traverse the
tree as follows:

a) Startwith theroot P,find on which side othe planethe observelies. That is
the AB side. The opposigde isthe CD side. So first, draw the CD side, then the
AB side.

b) Draw CD sideFind on which side of pthe observelies. The observer
is on the C side of p2, the opposite side is D. So first draw D then draw C.
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c) The D side hasnly one object, draw it (so we draw object 4
first)

d) The C side hasnly one object, draw it (the second object we
draw is object 3)

e) Draw the AB sideFind on which side of pihe observelies. The
observer is on the A side of pl, so first draw the B side then the A side.

f) The B side hasnly one object, so draw it (the third object we
draw is object 1)

g) The A side hasnly one object, so draw it (the last object we
draw is object 2)

The drawing order generated by this algorithm is therefore 4,3,1,2. This ordering is
correct.

Sometimes it might be impossible fiod a planethat neatly splits space into two
sections. When this happens, you can just aigk planeand slice objects apart
with it. Thatis, if a plane intersects an objeslice the object intdwo sub-objects
that do not intersect the splitting plane.

If we have a planar objetitat isexactly onthe splitting plane, therthe drawing
order can be tweaked slightly to draw it:

1) Draw everything that's othe oppositeide ofthe plane fromthe observer as
usual

2) Draw everything that's on the plane
3) Draw everything that's on the same side of the plane as the observer as usual
If the observer is on the splitting plane, the drawing order is not important.

For polyhedral objects, this can be usfiitiently asfollows. Instead o&rbitrarily
picking planes and splitting space, pick a polygon's plane as partitioning plane.

When generating BSP, youget a binary tree representation of your scene. If you
used theplanes othe polygons as partitioning planes, yave an additionahild
bonus. The leafs of the tree are either inside the polyhedron or outsides, Tt
regions in space described by thafs ofthe tree are eithdotally outside the
polyhedron or totally inside ifThis can baised for simplecollision detection of
polyhedron with points, evethough it is not alwaysfficient to doso. (Efficient
collision detection is beyonthe scope othis text. For a goodtarting point, see

[4]).
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All this brings uphe subject of generating aptimal BSP tree. There araany
problems withthat. Thefirst is thedefinition of optimal. Inthe collision detection
case (which isot too efficient anyway,but deserves mentiorgptimal often
means shallowestee. Fowisible surface determinatiominimizingthe number of
triangle clipping igmportant, asvell as minimizinghe number of nodes (which is
a consequence of clipping). oth cases, thproblem turnsout to beextremely
hard (NP-Hard). In th&minimizing the tree depthfield, a greedy algorithrthat
picks theplanethat splits space asvenly as possible might do weHowever,
when trying tominimize the number of polygon clips, it's harder gt good
heuristics.

Merging BSP trees is also\aery toughproblem.Basically it's atleast as hard as
generating a new BSP tree from scratch. However, it is possible to cut corners.

If we have a very large maze-like sceffer example), and amall object
navigatingthrough it, we can do as follows. Weat thesmall object as a point,
just like the observer, and traverse the B®fe of themaze scene tbnd where
the "punctual" objecbelongs inthe BSP treeOnce we have found it, we insert
the "punctual” object's BSiree at that point in theazeBSP treeThis will work
relatively well sdong as thesmallobject doshot come close enough to corners in
walls to cause ambiguities in the display ordering.

It is also possible to insert several objects this way in the maze BSP.

This algorithm can be very efficient if we hawveanyobjects spread over large
area where inter object ordering can be determieaslly, but the objects
themselves are complex so intra object visual surface determination is nontrivial.

Note that a BSRan be processed through adfine transform andkstill remain
valid if proper care is takerThis meansthat we can move &inary space
partitioned object around, or we can move the observer iB3ife object (these
two areequivalent anywawvithout fear of thealgorithm crumblingTherefore, it
is possible to have a few flying BSP objects at the same time, for instance.
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If A is the plane norma{of unit length), then |A| is 1 and can be removed from the
equation. B would be the vector frdight source to point to be lit. Then, we
make light intensity a function of G&swhich is calculated to besB/|B|, which is
fairly easy to calculate. Notdadt if0 is less thanv2, it meansthat theface is
actually facing away frorthe light source, inwhich case it shoulahot receive any
light from that light source. This can be recognized whesy|8|>0.

Usually,one makeshe intensity ofthe light received from a lightource AB/|B|
times some negativeonstant(since positive values of8/|B| meanthat theface
is facing away and that intensity is then 0).

One might want taake into account the fact thaght usually diminishes the
further away youare from dight source.Physics saythat light intensity is

inverselyproportional to the square of the distance toliie source.This can be
written as k/|B'=1, and multiplying that by the value previously given:

I=kxA«B/|B3

However, as experimentation shows, its@netimes useful taise some other
falloff than square of distanc@enerally, people have been usingeaond degree
polynomial of|B|. However, if we try thepecificcase ofinear falloff, wegetthis
very interesting simplification:

I=kxAeB/|B]2

If B=(a,b,c), then |B|=@+b2+c2)1/2 Thus, |BA=a2+b2+c2, which eliminates the
square root, which is usually the most expensive calculation we have.

The question of what point on the polygon should be useddioulating the
vector B fromlight source to the point on the polygon is answeretblmws.
Theoretically, B should be recalculated for each point on the polygasimight
turn out to beexpensive, and eonstant B is then used across the polygothifn
case, however, the B/ﬁBractor should be calculatazhly once for thewhole

polygon.

The Phong illumination model also includes a speculeomponent. In that case,
a function of theangle betweenhe ideal reflectionvector and the eye-to-point
vector is added. Theeflectionvector R is the direction iwhich the light should
be most reflected by the surface. R can be shown to be

R=2A(AsB)-B

(remember that A is th@lane normal and Bielight vector anchote that Aand B
should be normalized).
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Then, one can go either onetaf ways. The first one is interpolated shading, or
Gouraud shading The second one is Phong shadiadnich is a bit more
complex.

In Gouraudshading, one calculatése intensity of reflected light othe vertices.
Then, we linearly interpolate the intensity of the ligtitoss the polygon, as shown
below.

As can be seen above, intensities are calculateadl fgartices, particularly vertices

a, b and c. Then, intensity lisearly interpolated between a and b (assuming m is
1/5 of theway between a and We'll assign m an intensity of 4/&+1/5<b). It is
also interpolatdinearly between a and c. Thegiventhelight intensities at m and

n, theintensity isinterpolatedinearly between m and rAssuming P is midway
between these two, then its intensity should be (m+n)/2.

Note that for a n-gonwith n>3,gouraudshading is ambiguous the senséhat it
depends omscanlineorientation. However, with n=3, thehading is unambiguous.
As a matter of factgiven a trianglg(x0,y0), (x1,y1) and (x2,y2) and the three
intensities athe pointsrespectively i0, i1, i2, we can view this thsee points in
3d (x0,y0,i0), (x1,y1,i1), (x2,y2,i2). Since vege linearly interpolating, andhat
we have 3 points, then thereosly one solution, of the fornrAx+By+C. Using
matrix mathematicspne carfind the coefficients A, B and C, and then
computations are reduced to one addpwezl with very little setup.Specifically,
we know that:

Ax0+By0+C=i0
Ax1+Byl+C=il

Ax2+By2+C=i2
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Which can be represented in matrix form as:

x0 yo 1| /Al [i0
x1yl 1|B]|=|il
x2 y2 1] \C| \i2

or,
XK=G, where
x0 y0 1 A i0
X={x1yl 1 K=|B G=|il
x2y2 1 C i2

Therefore, we have that K=3(G, which solves for K.

As a speciahote, itshould be rememberghat asimilar process can be used for
any type of linear interpolation across the surface of a polygon.

It is easy to demonstrate that no point within the polygon will be brighter or darker
than the brightest or darkest verteaspectively. If a specul&ighlight shouldall
within a polygon, Gouraud shading will miss it entirely.

Phong shading(not to beconfused with théhong illumination model works
around thisthe following way. Instead of interpolating thmtensity linearly, it
interpolates the (x,y,z)alues ofthe pseudo-normalmearly, then normalizes, and
the does thdighting calculations oncper pixel. As a sidenote, theinterpolation
of X, y and z can be done as we just saw for Gouraud shading.

As you might imagine, this is extremely expensive. Many approximations,
workarounds and somesuch have been devised. Here we will studsudmne
approximation.

We will interpolate the (x,yyalue of pseudo-normalsearly, but we will set
z=(1-x2-y2)1/2_ Note that westill have asquareroot. However, since z is a
function of x and y only, anthat xand y vary between -1 and +1 only, we can
make a lookup table for sshich makes it dot faster. Then we can do thghting
calculations. However, this #ill a bit slow. If we knowour light vector to be
constant across the screen, then we can optimize it further.
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Assumingthe light vector is (0,0,1), then th&ghting calculationsfor diffuse

shading only igx,y,z) (0,0,1).This simplifies to z, which i§1-x2-y2)1/2 which is

the value westored in the lookupable.So, interpolate (x,y)inearly and lookup
intensity inthe lookup table. As a matter of fact, one eaanput some other
values than (1%y2)1/2 in the lookup table. These can be usedathieve

specular highlights, multiple lightources, or somaice metal/chrome/mirror
effects.

A note on the "mirror" effect. If wenaginethat we have a sphere centered on our
object with an extremely large radius, dhd inside ofthe sphere is paved with a
texture(examplesstars & stellar objects) and the object has a mirror surface, then
the environment(textured sphere) should be reflected on it. The perspective
calculations andtherthings make this complex. However, we sanplify things

this way. We assume th#te vector fromeye toobject (eyevector) is constant
over all of the surfaces of the objgethich is normallytrue only in parallel
projections, but i be almosttrue if the objechas little perspective distortion).
Second, we assuntieat the spherbas a large radius enoutjtat the point of the
spherewhich is reflected by @oint of the objecbnly depends on theyevector

and the surface normal.

In this case, we can interpoldtee surface noral Phong-style, then udieat to
compute the reflected point from the sphesengthe eyevector. However, the
computations arstill quite expensive. We caimplify them by usinghe hack
where we interpolate x and lipearly and then set z=(2x2)1/2 Then, the
normal vector of a point on the surfaceerirely determined by x and y. In this
case, the reflected point on the sphere depends on x, y aegethector. What
we can do is assumefiged eyevector, thermake a lookup tablévhich is then
only dependant on x and which is manageable) to findhat point on the sphere
it reflects to.

Hence this simplifies to interpolatinfpe (x,y) component of a surfacermal
across the screen, then looking it up in a lookup thllecontains the color of the
corresponding reflected point on the sphere.

Texture mapping & variants on the same theme

Texture mapping isthe process bwhich we give a polygon itewn planar
coordinate system, wittwo basevector thatlie inthe polygon's plane, and a
vector for the position of a point in th@ane. Specifically, if tand vlie in the
plane ofthe polygon, and w is a point in thiane ofthe polygon (foexample, a
vertex), then the plane equation for the polygon can be written as:

au+bv+w
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where (a,b) are the texture coordinates on the polygon. Once we have (a,b), we
can assign differergroperties to differenta,b) pairs. Foexample, we can make

the color of the polygon a function of (a,ihich corresponds tolassicaltexture
mapping. Another thing we can dopsrturb the surface normal of tpelygon

with some function of (a,b), which corresponds to bump mapping.

As it is, the Phonghading approximation we sawtime lastit of the preceding
section is essentially a texture mapping trick.

Note that it ispossible to have several differaa@ordinatesystemsor thesame
polygon, if several differentextures have to bapplied (ie,one for the actual
texture mapping, another one for the phonghading, another one fdyump
mapping, and who knows what else).

What we have said in this section uprtow is(relatively) independent of the
projection used. Now we will consider the type of projection used.

In a parallelprojection,linear interpolation, just like we dibr Gouraud, across
the projected surface t®rrect (sdong as the surface is planar). Howewenen
perspective projecting,niear interpolation is generallyrong. For an elaborate
discussion othe texturanappingequation in the perspective projection case, see
the perspective chapter.

If the plane ofthe perspectively projected polygon is perpendiculathi® zaxis,
thenlinear interpolation i€xact. As theangle betweethe plane ofthe polygon

and the z axis moves away from 90 degrees, linear interpolation becomes more and
more wrong. If the polygons are small enough on screen, the perspective distortion
might now show, but for larger and more angled polygons, it is quite apparent.

Linear interpolationmay sufficefor some purposes on low end platforms and
games, but a correction for perspectivité definitely beneeded for more serious
applications, as discussed in the perspective chapter.
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Let xg, X1, X2, ..., %-1 be the vertices in a clockwise or counter-clockwisier
around a n-sided polygon. Furthermore, IgbBl the normal of the edge between
Xj and %]1.

The second step iBnding the topmost vertex. In cases avhbiguity, of all
topmost vertices, take the leftmoshis vertex is certain to be convex. Say this is
vertex is vertex i

Let U be the vector fromj*o X1, and V be the vector fromj o ¥@1. Then

calculate thevalue of UN;. If it is positive, invert N otherwise do nothing.
Similarly, calculate ¥Njp1 and if it is positive, invert 1, otherwise do
nothing. N and Ng1 are now correctly oriented.

The point of thaffirst step was tanake at least one correctly oriented normal.
Then, start following the edges and generate correctly oriented normals as follows.

Given a vetex x for which No1 is known to be correctly oriented, Nan be
computed as followd.et U be the vector from;j %o X1, and V be the vector
from ¥ to X@1. Calculate No1°(U+V) and Ne(U+V). If the results are of the
same sign do nothing. If theye ofdifferent signs, invert N Nj is now correctly
oriented.

Triangulating a polygon

Let us first cover the convex scenario. We will be ugiegame notation as in the
previous section.

Take any triplet of vertices o1, X, Xj;j1. These three vertices form tfiest
triangle. Then, remove vertex fxom thelist, andthe polygon has now oress
vertex. Repeat until the polygon is a triangle, at which point you are finished.

1 2 3

One step of the algorithm is shown above.
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The concave scenario is a bit more complicated. What we will do is split the
concave polygon intemallerpolygons, eventually resulting in either triangles or
convex polygons that can be triangulated as above.

Find avertex that is concave. Let U be the vector froayxo . Then, vertex x

is concave if ananly if UsN; is more than zerd.oop through thevertices util
you find such a vertex. If you daot find one, then the polygon is convex and
triangulate it as above.

From that vertexfind asecond vertexjxor which the line segment from %o X
does notintersectany other edge. Theninsert that new edgenaking two
polygons, on¢hathas the vertices X1, Xig2, ---, 4, and onehathas vertices
Xj, XjO1, Xj02; ---» % Re-apply the algorithm on these two smaller polygons.

It can be demonstratefiat usingthe abovelgorithm on a n sided polygaomill
generate exactly n-2 triangles.

Computing a plane normal from vertices

It can be shownthat the (P,Q,R) components of the normal vectors are
proportional to thesigned area ahe projection of the polygon on the yz, xz and
Xy plane respectively.

The signed area of a polygon in (u,v) coordinates can be shown to be:
AUV)=112%F oien(Vitvio D *(UiD 1-Uj)
where (y, vj) are the coordinates of vertexix 2d.

Since we'renot really interested in thesignedarea, but some constatntne the
signed area, the 1/2 can be safely ignored without loss of precision.

Given a polygon in 3d, one can compute the above with:
P=A(y,z) Q=A(z,x) R=A(X,y)

Or, if you want, P is the area aalculated usingnly the y and z components of
the points in 3d, Q is the area as calculasrdgthe z and x components of points
in 3d, and R is the area as calculated using the x and y components of points in 3d.

Once this value ofP,Q,R) is known, the resushould be normalized, and then
correct orientation should be checked as described hereafter.

It should be noted that the A(u,v) equation simplifies to
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A(u,v)=1/2x[(u0-ul)(v0-v2)-(v0-v1)(u0-u2)]

in the case of a trianglédgain, the 1/2 constant can be ignored hormal
generation purposes.

Generating correctly oriented normals for polyhedra

In some cases, normal orientatiomglicit in the object description we have. For
instance, some modelessitput all vertices in a counterclockwise manmenen
seen from above. If this the case, theall that is needed is that the normal be
computed in aspecific way,without changingthe ordering of the verticeshen
the normals will be correctly oriented.

If this is not thecase, we need some form of algorithm to enpuo@ernormal
orientation.

For this task, we need to have computed timals tothe edges to for all
polygons making uphe polyhedron, each in their respeciiene ofcourse. The
edges normals ithe polygonglanes can be localized in spdgethe polyhedron,
we are going to use this. Nafeat each edge is connectediwm polygons, thus
has two normals, one per polygon.

Find the vertex with themallest xcoordinate. In case @mbiguity, resolve with
the sméest y coordinate. In case @mbiguity, resolve withhe smbest z value.
This vertex is known to be convekake all edges connected to that vertex, and
find the vector U that is theum ofall edgenormals(two peredge). Then, for
each face touchinthe point, calculate «AJ, where A is thdace normal. If the
result is negative, invert A, otherwise leave it as itAls.such facesiow have
correctly oriented normal.

From this point, traversall faces, propagating correctly oriented normals as
follows. Let usassume we havewvo faces F1 and F2, arntthat F1's normal is
correctly oriented. Let A1 and A2 denote F1 &®% normals respectively. Pick
an edge shared by F1 and F2, and compute Usuiimeofthe two edge normals.
Then evaluate A1) and A2 U. If they are ofifferent signs, invert A2, otherwise
leave it that way. A2 is now correctly oriented.

A specialnote, if thedot products arevery close tozero, theface should be
initialized withthe same normal, and marked as ambigubater, if you carfind
another face tdelp you better determirnie orientation of thdace, usethat
normal instead. Aanyrate,ambiguous faces should be avoided when propagating
normal orientation.
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One very good way gbropagating thenormals is tostartwith one of thenitial

faces forwhich wegenerated the normal, and then do a depth first search through
connected faces. The depth first search is elementary and will not be discussed here
because it isiot absolutely necessarghough it will tend tominimize time spend
computing normals orientation.

Polygon clipping against a line or plane

This problemoften occurs in computer graphics, and is often neededimeal
Fortunately, convenient solutions exist that work well.

The simplest solution is with convex polygons. In tbése, one shouldote that

there areonly 2 intersections of thelipping line or plane witlthe edges of the
polygon. When we face a concave case, there is anneweber of intersections

with the edges, but some ordering should be done for them, or degenerate edges
might result.

The method for clipping convex polygons is illustrated below.

C C C
x
h 4 b 2
d Polygon d Polygon d Polygon
a a a
e o e

Clipping plane Clipping plane Clipping plane
x
b
a
" - y
Clipping plane Clipping plane

Note that if one wants to keep bqiteces of theslipped polygon, this algorithm
can be trivially extended.

A more formal way of describing this algorithm is as follows.
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Let vli,v2,v3, ..., vn be the list of vertices, listed in a
clockwise or counter-clockwise fashion.

Then P1 will be the first piece of polygon, and P2 will be the
second piece.

For i iterating from 1 to n do

If the edge from vi to vi 01 intersects the clipping line
break loop
End if
End for
For j iterating from i to n do
If the edge from vj to vj (1 intersects the clipping line
break loop
End if
End for
Let x be the intersection point of edge vi-vi 01 with the clipping
line.
Let y be the intersection point of edge vj-vj 1 with the clipping
line.

P1is (in clockwise or counterclockwise)
vliv2, .., Vi, X, Y, Vjitl, vji+1, ..., vn
P2 is x,vi+1,vi+2, ..., vj,y

When doing this to a concave polygadhe algorithm is slightlymore complex.
Find allintersection points of edges withpping line,andsortthem according to
some arbitrary axis (try tase one fowhich the points coordinatesary a bit).
Name these sorted points p1, p2, ..., pn. Tmsert the new edges pl-p2, p3-p4,
..., pn-1 - pn. Then separate the two polygons and you are done.
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Obviously, this is dot of work for"just another representation of rotations in 3d",
especiallywhere matricesvork fine. Indeed, even if one igsing quaternions to
represent orientations, one wilypically convert to amatrix when actual
transformations are required. The main advantage of quaternions is for
interpolating betweetwo orientations in a useful manner, andyhaps alstor a
compact representation of orientations.

Preliminaries
Several notations can be used to write quaternions. foll@ving are all
equivalent:
Q=W+Xi+Yj+Zk
Q=<W, A> with A=(X,Y,Z) (a real number W, with a 3d vector (X,Y,2))
Q=(W,X,Y,2) (a 4d vector)
We can define enultiplication operation that respects the following:
i2=2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=].
<al, vlx<a2,v2>=<ala2-wh2 , s2v1+slv2+viv2>
Of course, al and a2 are real numbers and v1 and v2 are 3d vectors.

The norm or module of a quaternion Q=(W,X,Y,Z) igefined asthe euclidian
norm of vector (W,X,Y,Z). Aunit quaternion is a quaternion fowhich its norm
is 1.

Theconjugate of quaternion Q=<W,A> is defined as Qc=<W,-A>.
If we have the quaternion

Q=(0,v)=(0,X,Y,2)

and the unit quaternion

U=(cosP/2),sin@/2)xV)

where V is a unit vector, and

Q'=(0,v)=WxQxUc

then it can be shown that v' is v rotated about V by an anfle of
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Note thatthis impliesthat thetwo unit quaternions Q and -Q represent shene
rotation.

Conversion between quaternions and matrices

The quaternion Q=(W,X,Y,Zjassuming Q is unit) is equivalent, when interpreted
as a rotation, to the matrix:

1-2Y2 272 2XY- 2W-Z 2X-Z+ 2W-Y
2XY L 2W-Z 1-2X°- 272 2Y.Z- 2W-X
2X-Z- 2W-Y 2Y-Z+ 2W-X 1-2X°— 2.Y?

By examiningthe above matrix, it isasy to find, given aarthonormal orientation
matrix, the corresponding quaternion. First, compute W.

My MM =3-4XC-4Y%-47°

(M HMy Mgt 1)/4=1-X2-Y 2-72

But |(W,X,Y,Z)|=1 hence W-X?*+Y?+Z%=1 hence
W=[(Myr+Hmpa+mgat+1)/411/2

Then, compute X, Y and Z.

X=(m3zz-my3)/4W

Y=(my3-Mz1)/4W

Z=(m21-m12)/4W

Orientation interpolation

Often, we mighbnly have an initiabrientation, and a desired orientation at some
point in the future, and no data in betweenthils case, imight be desirable to
interpolate the orientations between these two key orientations. Assuming no other
data is available, quaternion interpolation is very appropriate.
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This could be done witkuler angles However, several problems arise when we
do so. Wecan venydifficultly control the exact path of the rotation, or the speed
for that matter. Walso get aproblem called Gimbal lock", where the object
appears tostop turning for abrief moment, and thetarts again in an odd
direction.

Using quaternions, wget none of thesgroblems. Speed obtation can benade
constant, and the path of the rotation willthat of the shortest arc. However, we
get numerical problems whethe rotation is close to 180 degrees. Also,ve
need to interpolate through more than 2 quaternions if we waatdte bymore
than 180 degrees.

The idea is to picturthe unit quaternions &®ing onthe unithyperspherein 4d.
Then, we carfind the shortest arc over thlagpersphere between these two
guaternions, and interpolate linearly the angle along that arc.

Given two unit quaternions, gl agg, let udirst find theangle between them. By
definition of angle as a function of dot product, we have:

@=acos(qig2)

Then, let us have a parameter t teies from O to 1. Themhe quaterniogiven
by:

q(t)=sin((1f t)-(p).q1+ sin(t-(p).qz
sin(®) sin(@)

will give uniformly distributed orientations between gl and g2 as t varies from 0 to
1. In particular, q(0)=g1, q(1)=qdhis is calledspherical linear interpolation,
or SLERP.

Note that wedidn't check if we weresingthe shortest arc or the longest on the
great circle. In order to take the shortest path, we simply check that

(91-02) (91-92)>(q1+g2(ql+q2)

If that is false, replace g2 by -g2 (this is allowed since Q and -Q repressaiine
rotation).

The above formula will have numerical difficulties wihyeis close to 0 ort. When

@ is close to 0, we can replace the SLERP withmglsi linearinterpolation.E.g.

g(t)=(1-t)ql+tg2. Wheng is close tom, we need to add mork&eyframes
(intermediate quaternions).
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Antialiasing

Introduction

In manyplaces, we have approximated continuous phenomesarpling it at
discrete intervals, and then reconstructingimage withthese samples. As an
example, we have studied shootorge beam of lighthrough the center of gixel
and see what it intersects and then coloring the whole gfixbe by whatever
color corresponds to what it hits.

This mightresult in very inaccurate and sometimessightly pictures. As an
example,take ablack and white tiled floofor which the tiles are 0.25 meters
wide, which we sampled at intervals of nteters. Then, we will have either all
white samples oall black samples. Thidoes not represent the color of fleor,
which should either be a mix of black and white, or, in a certain sense, gray.

This is an example of aliasing space, but numerous other typeslidsing exist.

For example, say ware making an animation by generating seveiatures of a

scene with movingbject and therdisplayingthe still frames quickly(say, 24
framesper second). lour model, if an object moves fast enoughnight appear

to jump around on the screen. Fexample, ifthe object is 1 centimeter big, but
moves so fast that in 1/24th of a second (the duration of a frame), it's 5 centimeters
away from where it was beforihe object will appear to jumyery drastically. Or

even worse, an object could pass right in front of the camera in befapena

and b, but not be on neither frame a nor b.

In this section, we will introduce a few tife techniquethatcan be used to fix
these problems.

Filtering

Filtering, inthe way that we want to use it, Bssentially aveighted average of a
signal. Filteringheory is extensivdgut we are notoncernedoo much by it here.

| will just mentionthat it ispossible totake the transform (Fouriewavelet or
other) of a signaand then remove vegmallamplitude components and/dngh
frequency" components. This is what is traditionally viewed as filtering.
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In our case a filter isepresented by fltering mask.We'll startwith 1d cases. If
we have a 1d signal (think of it as a single scanline in a pixmapagbe some
sampledsound), then we hawedmething like $,53,54, ..., §, Where thei%s are
sampleddata. Here, we have samples. Then, we might want tweate the
samples g, 9', 53, ..., §-1, Where g=(§+5+1)/2. This is an example of a filter,
sometimes referred to as a "low-pass filter". Thisan®therlegitimate filter:
§'=.25%+.753+1. This particular filter is said to bbiased towards g1. In
general, theclass of filters gsbs4+1 can be represented by the vector equation
(a,by(s,5+1)- (a,b) issaid to behefilter mask. Inthe lastexample wegave, the
filter mask is (.25, .75).

In general, filtersaare applied by takinghe weightedsum of several samples. We
normally likethat thesum ofthe components of tHéter mask beone, inwhich
case thdilter tends tonot change theverall intensity otheimage. Ifthe sum of
the components of the filter is not one, we get very different effect. &saanple,
thefilter (-1,2,-1) issometimes callethe differential filter,for it approximates the
derivative of a signal. It is generalhot very useful as an approximation to the
derivative, however it tends taghlight contrasts in a signal and can be used to
help in edge detection, for example. This filter can be writtefra§25+1-S+2.

Two dimensional filtersare generallymore useful tocomputer graphics people.
They are usually written in matrix form, FfX:f This is an example filter, called the
box filter .

Slr sl gle
i Gls Gln
5lr &lv 5le

aliiI=(rOG1+2pl0+1]+plill+2]+
2p[i+1]+4p[i+1][+1]+2p[i+1][j+2]+
pli+2][j]+2p[i+2][j+1]+p[i+2][j+2])/16
Where q[i][j] is the filtered sample, and p([i][j]'s are the original samples.
These filters are made so as to remove kigty frequency from images, which are

usually poorly represented. (High frequency component here is taken in the Fourier
series sense.)

Pixel accuracy
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When applying anytype of shadingexcept flatshading to a polygonpixel
precision becomes an issue. We often calcutatementallysome valuger edge
(for example, ingouraudshading, we interpolatthe shading linearlyalong the
edge, and in texturenapping,(u,v) texture coordinates get interpolated along
edges and across the polygon).

Referring to the figure above, an example will be given Giaraudshading. The
small circlesrepresent theixels, andthe dark edges are the edge of a triangle.
With Gouraud shading, we start at P and wegaren somenitial color. Then, we
want to interpolate down the edge. However, it is important to notice th#ad3 is
than onescanlineabove thescanline ofP1. Therefore, the vector drawhove
from P to P1 is shorter than the vector from P1 todPty drawn aboveTlhis
needs to be taken into consideratiorgéd correcpixel accuracy. Furthermore,
once we have the correct color at P1, we can't sipuygiythat color intgixel A
even though the distance between P1 and A is less thgnixehé/Ne have tdake

into account the distance from P1 to A into our calculations. As a matter of fact, in
this particular example, A is roughtalfwaybetween théeft and right edge so its
color should be roughly the average color of the two edges.

Then, as we go to the nestanline, we need to perforour calculations starting
from P1.Giventhe color at P1, wénd the color at P2and then we need to
calculate theroper color fompixel B bytaking into account the distance from P2
to B. This goes on for the whole triangle or polygon.

This example can also illustrdtew edge pixels should be considered. Firstllpf

edge pixels should be extremely rare. As can be seen in the example above, not one
pixel is exactly on amdge. In thevery rare casevhen a pixel is exactly on an

edge, you can use mple disambiguatingule to decide one it, such as "draw the

pixel only if it's on a left edge, not on a right edge". Another way of doing this is of
thinking of pixels as having irrational x coordinate and rational y coordindit@aiso

edges with rational endpoints have no hope of going through them.
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Sub-pixel accuracy

The other way of improving the quality of our images is by dalhgplculations at
some higher accuracy. The intuitive way of doing this iéate ahighresolution
image and scale tlown to thedisplay resolution afterwardswhich ought to
produce a better looking image.

It turnsout thatthis works well, and is in fact hard tbeat. However, it is rather
expensivepoth in renderingime andstorage space, and we will attempt to look
into alternate algorithms as well.

When scaling an imag#gown, there comes the question of how pixels should be
averaged.This boils down to picking a filter, as inthe previous section, and
applying it to eachegion of thepixmapthat getsscaled down to ongixel. Note

that the uniform filter (the filter in which each pixel has equal weight) might not, as
could be thought at first, be the best choice. The fihi@x is already abetter
choice. However, ainiform filter is better than no filter, anone should be
considered for a real-time system if it is easier to achieve than a generic filter.

An alternative to generatingfally blown highresolution picture is tadaptively
increase the resolution. If ydnd thatseveralsmallobjectsget drawn in thesame
pixel, subdividehatpixel into asmallbitmap and calculate mopeeciselyfor that
pixel. This can beecursed awill, for arbitrary precision. However, this process is
still somewhat expensive, and lhe disadvantagiat it has to be more dess
hard-wired all over the graphics engine. It is hard to perform this in real time.

A very attractive alternative is the so-calkeduffer.

For each pixel, a 4x8ubpixel grid isassociated. However, insteadhatving full
R,G and B componentshey aremerely bitmasksThen, for all pixels, the
following is done. Alist of all polygons covering thipixel has to beyenerated.
Then, the 4x8bitmask of whatever igovered by a polygon ithat pixel is
generated. Thenysing and'she amount of overlap can be determiretd,.. and
color can be computed using this (more on this later).

Let us use an example. Let's say that the following polygonal piece is in a pixel:

A

This is represented by the following bitmask:
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We already mentionethe time aliasingeffect. The most popular method of
performing time antialiasing is still enerate severélames at very close interval
and merge them together. Once more, different filters can be applied.

One has to be careful when performing motion blisible motion blur is
something that shouldnly happen when thingsre moving faster than thérame
rate allows us to seel-or example, an animation going at 24 fps (frames per
seconds) shouldot have drail behind arobjectmovingonemillimeter per frame

on the screen. Put different terms, aanimation going at 24 fps shouidt show

in a frame an event that happened 0.25 seconds ago. Thiscaffedtpersistence,
can be quite annoying, artiough it can produce an interesting result, it is
generally not interesting or realistic to do so.

Therefore, if we want to generatdime antialiased animation at 24 fps, weally
need to generate something like O fps animation, and thapply a filter to
merge thdramesfour by four andget a 24fps animation. This is, as can be seen,
quite expensiveHowever, it tends to produceery nice lookingpictures. If the
frame rate isn't kickedhigh enough, a fasmoving object will appear(in our
exampleabove) as 4 distinct though semitransparmeratgesper frame. This is
probably undesirable, but little can be done if objects are moving fast enough.

Other approaches haumeen attempted,mostly in raytracing, and wilhot be
discussed here. One notable atkat might be worth further interest is the
extruding of polygons as volumes in 4d with timetlaes fourthdimension and
trying to get themotion blur fromthat. This would havehe advantage difeing
muchmore exact thaanythingpresented herall the while not having problems
with very fastmoving objects. However, even if the exact path of the object is
known, extrusion along that path might be too expensidéfmult to perform, so
linear extrusion might have to lbensidered. Nevertheless, | suspect this would
produce very attractive results.

Mipmapping
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Texture mapping was described previously. Howeveaj\geapproach was taken;
we didnot consider what happens whitre texture is secaled downhat it takes
several texels to cover a singlxel. Inthe context othis chapter, however, we
would like to somehow "average" (more properly, filtd® texelghat cover a
single pixel toget anicer looking picture. To illustraténe problem, if the texture
is so shrunkhat it barely covers onepixel, thenthe color of thapixel will be a
more or less random point from the texture. Hence, if the textumetisery
"smooth", this particulapixel can "blip", changeolor rapidly and scintillateThis
is of courseundesirable. Also, even thougihe textureseen from afar might be
blue for the most part, amall reddish region mightesult in the wholepixel
appearing red, which would be wrong.

Performing different approaches can be taken toatitialiasing problem. We can
actually computeall the texelsthat fall within a pixel, then apply some filter,

perhaps even based on #iee ofthe texel in thgixel. These sort ohpproaches
lend themselves very poorly to real-time applications, whitteisnain interest of
this document, hence we will not approach them.

A real-time alternative is Mipmapping. Thexturemap is pre-filtered to different
degrees, and at run time, we determine hawechthe texelgyet squished by the
perspective transform, and the select the proper mipmap.

Uniform Mipmapping

Classically, this if1ow mipmapping islone. We stanvith atexture mapSay the
texturemap is of size 64x64. Themipmaps of siz82x32, 16x16, 8x8, 4x4, 2x2
and 1x1 are generated m®cursively averaging 2x2 blocks of pixels. g¥artwith
the 64x64 texture map, then average each 2x2 blog&tta 32x32nipmap. Then
we filter that mipmap again t@et a 16x16nipmap, and son. Themipmaps can
be labelled "mipmagtl" for theunfilteredtexture map;mipmap#2" for thefirst
mipmap, and so on.

The mipmapshould be chosen based on the amourdggoishing we think the
texelswill undergo. If wefeel that eactpixel will cover about 4exels (roughly a
2x2 block), then we should use the 32x8pmap. Ifthe texmap igven more
squished (perhaps 16 texels per pixel, 4x4) then the 16x16 mipmap should be used.

Let's look atmemory requirementset K be the amount ahemoryused by the
basictexture map. First we obsertlgataveraging 2x2 block of pixels amaaking
the firstmipmap makes something whitdkes one fourth anuch memory as the
texture map. As a matter of fact, edane we generate anothamipmap, the
memorytaken by the newnipmap isl/4 that of the oldHence the totanemory
is:

K+K/4+K/16+K/64+K/256+...+K/(A)<K+K/4+K/16+...+K/(AN+...
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=K(1+1/4+1/16+1/64+.......)=4K/3

Hence,classical mipmappingakes but 1/3 morenemory than straight texture
mapping.

The problem of determiningthich mipmap touse is, howevenot trivial. As
mentioned previously, this should be a functiorihef"squishing"undergone by
the texels. However, thequishing inthe x direction can beastly different from
the squishing irthe y directionYou can fight with this, or you can invent a newer
type of mipmapping.

Nonuniform Mipmapping

Instead ofscalingthe texturemap homogeneously (llje samefactor in x and y),

we can generatsmipmaps with nonuniform scaling. This waythiere is a lot of

"squishing" in a directioyut very little inthe other, aelatively good mipmap can
still be found.

Still usingthe 64x64exampleabove, we would generat@ipmaps othe following
sizes:

64x64 64x32 64x16 64x8 64x4 64x2 64x1
32x64 32x32 32x16 32x8 32x4 32x2 32x1
16x64 16x32 16x16 16x8 16x4 16x2 16x1
8x64 8x32 8x16  8x8 8x4  8x2 8x1
4x64  4x32  4x16  4x8 4x4  4x2 4x1
2x64  2x32 2x16  2x8 2x4  2x2 2x1
1x64 1x32 1x16  1x8 1x4 1x2 1x1

Note that themipmapscan be indexed by a pair of humieor instance, the
mipmap 64x64 can bedentified tothe pair(1,1), themipmap 64x16 could be
identified tothe point (3,1)mipma2x4 would be (5,6andmipmaplx1l would be
7,7).

It mightappear on first lookhatthis will require dot of memory, however this is
not asbad as it might firsappears. A geometric demonstratiorgissen below.
This figure containghe texturemap plusall the mipmaps listecabove. As can be
seen, thanemorytaken by themipmapsand the texturenap isfour times the
memory taken by the texture map alone.
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In this casethe mipmapsareindexed bytwo indices. If no scalingccurs in the x
direction, butscaling is roughlyl/2 in the y direction, wenight want to use
"mipmap (1,2)" (which is the 64x32 mipmap).

All in all, uniform mipmappindgakes 4/3 thenemoryused by a texmap bbas its
problems, while nonuniform mipmapping makes aitempt to reduce these
problemsbut takes 4imes as much memory as a simg@gmap.Note, however,
that we are fortunate enough that the amountmemorytaken bynonuniform
mipmapping is merely a constant times what is required for texture mapping.

Texture Map

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

fffffffffffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Summed area tables

If we want to use a bloditer (averageall the texelghatshould go in anipxel),
we can use something perhaps more general, called a summed area table.

Let's say we have texturemap T[x][y]. We want to calculatine average of all
pixels in the squaralelimited by say(p,q) and (r,s). (Thatis, the square
[p,Nx[qg,s).) Oneway is topre-compute aummedarea table of theame size as
the original texture.This summedhrea table S idefined as follows. S[x][y] is the
sum ofall texels T[m][n] for m<x,n<y. Then it is easy to sé¢leat thesum of all
texels in thgp,q)-(r,s) square is Q=S][r,s]-S[p,s]-S[r,q]+S[p,fGhen themean is
M=Q/([r-p]x[s-q]).
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This allows us to applgnevery special type of filter taxis aligned boxes in the
texturemap relatively quicklyThe probem is, most diie time, the texelhat

cover apixel weare rendering doot form anaxis alignedox in the texturenap.

There are alsotherissues: the blockilter is not atremendously attractive one,

the filter should depend on the relative space taken up by each texel on screen, and
So on.

Bi-linear interpolation

Now we have (more dess) taken care dfie case wherseveral texelare in the
same pixelBut sometimeghe opposite happens, and a teyets stretched over
several pixels. Of course, if we are using one osth@ler mipmapand theexels
cover many pixels itcould meanthat weshould be using a larger mipmap. But
when weget to the raw texturmap andhere are no more "larger" textureaps,
we're stuck.

Bi-linear interpolationattempts to solvéhis problem. We will be using lmnear
polynomial of two variables (ie, a planequation), thus théBi” of bi-linear.
Typically, the texel coordinates will not be integer, as is depicted below.

nw, ne

sSw se

The texels are nw, ne, sw and(skort for north west, north east and such). P is
the actual texture coordinate for the currpmel. A, B, C and Dare the area of
the rectangles seen on the diagram above. The color we assign to the pixel will be:

Axnw+Bxne+Cxse+Dxsw

This isthe "bi" part ofbi-linear. Incidentally, this iV also improve picturewhen
mipmapping is used.

It is possible to use somethimgher than linear interpolation. Ferstance, bi-

cubic interpolation igpopular.Bicubic polynomialsare often used. A grid of 4x4
texels will be used as control points for some uniform spline of two variables. Once
the spline coefficients are known, the spline is evaluated at the intermediate point P
(see the figure for bi-linear interpolation, above) and this value is used to shade the
pixel.
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Tri-linear interpolation

Tri-linear interpolation is bi-linear interpolation with an additional interpolation.
First, a description founiform mipmapping will be giventhen this will be
extended to nonuniform mipmapping and summed area tables.

When weusemipmapping, we need a function which tells us what mipmajs¢o
However,maybe thigunction tells us to usénipmap#3.15",which weround to
simply "mipmap#3". This meansthat we should use amipmap somewhat in
between 3 and 4, but more towardsTI8:linear interpolation simply interpolates
linearly the mipmap betweenmipmap 3and 4 (probably using, mur specific
example of "mipmap #3.15", 85% of mipmap 3 and 15% of mipmap 4).

This will make the change imipmapsquite smootherwhich will have an
important effect on animations in particular.

Using nonuniform mipmapping, we simgxtendour idea to interpolatéinearly
between foumipmaps.le, if we wantmipmap#3.2 in the x direction and #5.7 in
the y direction, wemix in (0.8x0.3)=0.24 ofmipmap(3,5) with (0.2x0.3)=0.06 of
mipmap (4,5), (0.&0.7)=0.56 of mipmap (3,6) and lastly (0.2x0.7)=0.14 of
mipmap (4,7). As wecan seemipmap (3,6) is the dminantone, as is to be
expected and mipmap (4,5) is barely used at all.
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Glossary

Complex numbers: a number with a real and imaginary part, of the form Z=a+bi, where i is
the imaginary part. We define ?=-1. This way, we can define addition,
multiplication, subtraction, and even inverse. Complex numbers can be compared
to points in the plane. As such, they have a polar coordinate form.tRiome
can definethe euclidiannorm, or absolute value of a complex number.uByg
Euler's representation, we cput this form in exponential form. It is afote that
multiplication by unit complex humbers represent rotations in the plane.

Convex: term used to describe polytopes, such as polygons and polyhatrandthat
the inside angle is always less than or equal tb. F8@iangle is always convex. A
square or a rectangle is convex, but otipgadrilateralanay not beconvex. The
term convex is sometimes used for a vertex or edgaytthat the insideangle at
the vertex or edge ikss than or equal to 180An equivalent definition of
convexity is, given golytope, the intersection of the polytope amy line is
always 0 or 2 pointexcept in degenerate cases. A stricter mathemadtdiaition
is used in the spline chapter. It is a generalization of our simpler definitions.

Concave: any non self-intersecting polytope that is not convex is concave.

Edge: aline segment between 2 vertices. An edgaically delimitates gpolygon. A
square has 4 edges, a cube has 12.

Euler angles: 3 angles usedrapresent apecificorientation. Can be used to represent
anyrotation, but is novery useful in practicéor several reasons. Firglhe order
in whichthe rotations arapplied is importantSecond, it isvery hard tofind the
Euler angledor agiven orientation. Third, theangles have very littiphysical
meaning.

Face: a polygon that delimitates a polyhedron. A face is always planar. A cube has 6 faces.
Also, since polygons in 3d have two sides, they are sometimes referred to as faces.

Mach banding: The human eye accentuates contrasts. Therefoesifrfaces oslightly
different colors lie next to each other, the boundary between the two wididoky
visible sincat's an area oligh contras{contrastis, more or less, change of color
over distance)This happens when we hat@o few colors togive a continuous
texture to a surface, evhen coloring adjacent faces of an object witiform but
slightly different shades of the same color.
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Matrix: a 2dimensionabrray of real numbers. Can alsotheught as an array of vectors,
or a vector of vectors.

Normalizing: making a vector V of unit length, by multiplying it by 1/]V]|.

Polygon: a flat, 2d polytopdelimited bystraight edges and verticdsxamples include
triangles, squares, decagons. We normally prefer all vertices to be distirtbatand
edges dmot cross. We donlike it either wherthe polygon is disconnecté¢el.g.
has several, distinct parts that are not connected).

Polyhedron: a 3d polytopelimited by planar faces, lineadges and verticeExamples
include cubestetrahedra, icosahedra. As with the polygon, we prefer vertices to
be distinct, edgenot to crossfacesnot tointersect, and the polyhedron to be
made of one piece as opposed to several disconnected pieces.

Polynomial: a mathematical entitythat can be reduced to them
agtagx+apx2+agx3+...+gxN for some n, jabeing a real number and a real
variable. Example polynomials include: tx, XO+2x+3, X(x+2)(x-3).Examples
of things that are not polynomials: x(x+l)/(x+23,+x+sinx.

Polytope: an object in dimensions defined by lineaonstraintsExamples in 2d and 3d
are polygons and polyhedraspectively. Polytopesre normally made of single
piece. Thatis, from anypoint in a polytope, there is a pafivhich might be
twisted) thatcangetyou toany other point in the polytope withowxiting the
polytope.

Quaternion: similar to a complex number, a quaternion has 1 realisagi8aryparts. It
is generallywritten as Q=a+bi+cj+dk, where i, j and k are orthonormalinary
parts. Thes@émaginarycomponentsatisfy the following equalities: ij=-ij=k, jk=-
jk=i, ki=-ik=j, i2=j2=k2=ijk=-1. Fromthat,addition, subtraction andultiplication
operations can be defined. The useful thing about quaternions mp|tiglication
by unit complex numbersepresent rotations in 2dnultiplication by unit
guaternions represent rotations in 3d.

Taylor series: A power series that approximates a function.
Texel: One unit in the texture map, the texture map equivalent of a pixel.

Texturemapping: Historically, this ithe "sticking" of a "picture” ortop of apolygon. A
bitmap, calledtexture map, is mapped onpalygon or triangle. This has been
generalized greatly howeveXow, texturemapsare sometimes replaced by a
function of an x,y,z point in space. Also, tiexture need no longer besanple
picture. The texture can badight perturbations to the surface nornfaump
mapping), a "transparency level" (alpha channel) or a number of other things.

Pixel: The smallestdot displayable bythe hardwareAlso used to describene small
square unit in a bitmap.
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Vector: strictly speaking, a n-uplet, such(8s2,5,1). Itcan be viewed as amrow in any
number of dimensions, froome point p1l to a point p2. The vectmr (x,y,z) to
(a,b,c) is (a-x,b-y,c-2).

Vertex: a pointusually called this way when it tee endpoint of at least one edge. A
square has 4 vertices, a cube has 8.
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