Window Procedure: 2nd part
By Wallyfblu

Introduction

In the first issue, I showed you a simple way to manage the windows messages using functions pointers to choose the right proc to call.

Now my goal is to expand this method to every single message, or at least, to a group of messages and put all them in a library.
I will explain this method using some examples. Attached you can find the library code and an simple example of its use. I commented both library and example to avoid to write a long article (
The Library
In the first example I used this function to handle the WM_COMMAND message:

<code>

Function OnCommand(ByVal hWin As HWND,ByVal uMsg As UINT,ByVal wParam As WPARAM,ByVal lParam As LPARAM) As Integer

Select Case HiWord(wParam)

Case BN_CLICKED,1

Select Case LoWord(wParam)

Case IDM_FILE_EXIT

SendMessage(hWin,WM_CLOSE,0,0)

'

Case IDM_HELP_ABOUT

ShellAbout(hWin,"MyApp","",NULL)

'

End Select

'

End Select

Return false

End Function

</code>

You can see a likeness between this function and the WndProc function: you have to select some code to execute based on some input parameters (HiWord(wParam), LoWord(wParam), etc.).
So I decided to use a struct (type) and an array of this type to store the information about messages:
<code>

#Define NumWidget 32

#Define NumMess 32

#Define N_WxM Numwidget*NumMess

Type GlbMsgMgm

id As Integer

'who is?

addr As Any Ptr
'what want to do?

msg As Integer
'which message is?

code As Integer
'which notify?

End Type
'the array to process the "events"

Dim Shared As GlbMsgMgm Events(N_WxM)

</code>
and use some function that make the work:
<code>

'in an object point of view it would be an Event/Method

Declare Sub OnClick(id As Integer,proc As Any Ptr)

Declare Sub OnChange(id As Integer,proc As Any Ptr)

Declare Sub OnActivate(ID As Integer,proc As Any Ptr)

Declare Sub OnInit(ID As Integer,proc As Any Ptr)

'in an object point of view it would be a Property. Yet to be implemented

Declare Sub Align(id As Integer,cAlign As Integer,WType As Integer)

</code>
We take the Onclick Sub :

<code>

Sub OnClick(id As Integer,proc As Any Ptr)

Events(ccount).id=id

Events(ccount).addr=proc

Events(ccount).msg=WM_COMMAND

Events(ccount).code=BN_CLICKED

verify_N_WxM

End Sub

</code>

Here we fill the type fields using the control ID (or menu), the proc that will be called and the message and notify message for next verify.
Now we need a proc to process this type of messages and, as you can see, it’s very closed to WndProc:
<code>

Private Function MngCommand(ByVal hWin As HWND,ByVal wParam As WPARAM,ByVal lParam As LPARAM) As Integer

Dim As Integer code,id,k

Dim ChSub As Sub()

code=HiWord(wParam)

id=LoWord(wParam)

If code= BN_CLICKED Then

If id=IDCANCEL Then EndDialog(hDlg,0)

EndIf

For k=0 To ccount

If Events(k).msg=WM_COMMAND Then

If Events(k).code = code Or code=1 Then

If Events(k).id = id Then

ChSub=Events(k).addr

ChSub()

Exit For

EndIf

EndIf

EndIf

Next

Return TRUE

End Function

</code>

I used a variable to store the messages/widgets I’m used:

<code>

Dim Shared As Integer ccount=0
</code>

And this aux. func. for a simple error check:

<code>

Private Sub Verify_N_WxM

If ccount < N_WxM Then

ccount+=1

Else

MessageBox(NULL,"Too many item in the array","FB - Fatal error",MB_OK)

End 1

EndIf

End Sub

</code>

I don’t explain all lib because I think you can understand it from the source. You can extend the library following the framework I used, so if you need to manage the WM_SIZE message, you need a MngSize function and a Align “property” and obviously a way to store the size of widgets.
I’m sure I could choose a “object” style code, but my intention was to show a method. Translate this library using type as object should not be difficult and could be an exercise.
The example

For this example I add some “GUI” proc to the library to hide the internal details. See the library code.
The sample code

<code>

' Program start

OnInit(IDD_DLG1,@IDD_DLG1_Init)

OnInit(IDD_DLG2,@IDD_DLG2_Init)

OnClick(IDC_BTN1,@IDC_BTN1_Click)

OnChange(IDC_LST1,@IDC_LST1_Change)

hWnd=CreateForm(NULL,ClassName,NULL,IDD_DLG1)

'select the list

SetFocus(GetDlgItem(hWnd,IDC_LST1))

'select first item in the list

SendDlgItemMessage(hWnd,IDC_LST1,LB_SETCURSEL,0,0)

RunForm(NULL)

ExitProcess(0)

End

</code>
Here you can see how to use the function included in the library. For a complete (short) list of this functions see the wndproca.bi file, included in the first code line.
<code>
'the library interface

#Include "win/wndproca.bi"

</code>

Conclusion

With this second article, I show you my way to hide the windows programming details and write, maybe, a readable code. This is just a starting point for a usable library although I am aware that there are many product that do better. My only goal is to learn windows GUI programming (I don’t use Linux () updating the library when I need new features.
I hope to help someone to start code Win32 GUI app in a simple manner but with the knowledge of how it works.
Attached file:
Greets to:

All article writers and Pete
If you have any idea , suggestion or disappointment please mail me to:

wallyfblu@libero.it
