Speed Equalization in QB
INTRODUCTION

[image: image1.png]

 [image: image2.png]

How often have you begun to run an old QBasic program that you’ve always wanted to check out or perhaps one you’ve written yourself, only to discover that the program runs so fast it’s completely unplayable? Or maybe you’ve programmed a game on one computer, only to find out it’s way too fast or way too slow on a friend’s machine. It’s annoying to have to adjust a hard-coded delay every time you run a program that was programmed on a different machine. How do you, as a programmer, ensure that the speed of your program remains nearly the same regardless of who’s running it and where?

You’ve probably already identified the key programming function affecting this phenomenon: the delay loop. Often this delay loop consists of an empty FOR/NEXT statement with a large delay number or, in the case of FreeBasic, a SLEEP statement with the number of milliseconds for the delay duration. (As you probably already know, QBasic’s SLEEP statement only accepts numbers of whole seconds to delay.) This tutorial will present a method for consistently controlling the speed of any QBasic program regardless of the speed of the cpu it’s running on. (Ignoring the factor of whether other programs are running simultaneously on the cpu.)

PART 1 IN BRIEF

The first part of this tutorial shows how to code a function that simply delays a specific amount of time consistently, disregarding anything else that might be going on in the rest of the program. After being passed a variable indicating the desired number of milliseconds to delay, create a loop that delays that exact amount of time using SLEEP (FB only), or FOR/NEXT commands.

PART 2 IN BRIEF

The second part of this tutorial shows how to adjust the delay mechanism to ensure that all functions of the program perform at the appropriate speed. Determine the average amount of milliseconds the main program loop or the individual functions of the program take to execute, and then implement the subroutine created in part 1 to compensate for the speed of the cpu.
PART 3 IN BRIEF

The final part of this tutorial shows how to ensure that the process of gauging a machine’s speed doesn’t occur every time the program is run in order to avoid annoying users with long waits every time the program begins.

THE GUINEA PIG

[image: image3.png]

For illustration, let’s work with a simple program that displays a ball bouncing around the screen. Here’s the original code:

DECLARE SUB changePosition ()

DECLARE SUB dopause ()

DECLARE SUB drawObject ()

SCREEN 13

CLS

'Share all the variables for simplicity.

DIM SHARED ball(1000) AS INTEGER

DIM SHARED ox AS INTEGER, oy AS INTEGER

DIM SHARED oxl AS INTEGER, oyl AS INTEGER, oc AS INTEGER

DIM SHARED oxdir AS INTEGER, oydir AS INTEGER

DIM SHARED screenXLimit AS INTEGER, screenYLimit AS INTEGER

'Note the dimensions of the current screen mode

screenXLimit = 320

screenYLimit = 200

'Define the starting point of the ball.

ox = 30

oy = 100

'Define the diameter of the ball.

oxl = 10

oyl = oxl

'Define the ball’s starting direction.

oxdir = 1

oydir = 1

'Define the ball’s color

oc = 4

'Draw and capture the ball picture.

CIRCLE (ox, oy), (oxl / 2), oc

PAINT (ox, oy), oc

GET (ox - (oxl / 2) - 1, oy - (oyl / 2) - 1)-(ox + (oxl / 2) + 1, oy + (oyl / 2) + 1), ball

CLS

DO

 changePosition

 doPause

 drawObject

LOOP UNTIL INKEY$ = CHR$(27)

END

SUB changePosition

IF (ox + oxdir) > (screenXLimit - oxl) OR (ox + oxdir) < 0 THEN

 oxdir = oxdir * -1

END IF

IF (oy + oydir) > (screenYLimit - oyl) OR (oy + oydir) < 0 THEN

 oydir = oydir * -1

END IF

ox = ox + oxdir

oy = oy + oydir

END SUB

SUB doPause

DIM delayVar AS INTEGER

FOR delayVar = 0 TO 2500000

NEXT

END SUB

SUB drawObject ()

PUT (ox, oy), ball, PSET

END SUB

PART 1 IN DETAIL
The goal of the first step is to create a subroutine that can be passed an integer and delay the program for that number of milliseconds.

FB users can simply use the SLEEP command with the number of milliseconds. No additional programming is required.

QB users can determine the how many empty FOR/NEXT loops per second the cpu can process by running an empty FOR/NEXT loop for a large number of cycles to calculate loops per second using either TIMER or TIME$. Then a function can be called using a FOR/NEXT loop to delay for a given number of milliseconds. (TIMER could also be used with DO/LOOP to delay for up to hundredths of a second.) Store the cycles per second in a SHARED variable for later reference.

GAUGE CYCLES PER SECOND

TIMER

‘Beginning of program

DIM SHARED cyclesPerSecond AS LONG

SUB gaugeCyclesPerSecond (cyclesToTest AS LONG)

DIM startTime as DOUBLE

DIM endTime as DOUBLE

DIM cycles AS LONG

DIM secondsPast AS DOUBLE

‘Ensure that cyclesToTest is a positive number.

IF cyclesToTest < 1 THEN cyclesToTest = 100000

‘Run test.

startTime = TIMER

FOR cycles = 1 TO cyclesToTest

NEXT

endTime = TIMER

‘Compensate for a test begun just before 12:00 am system time.

IF startTime > endTime THEN endTime = endTime + 24 * 3600

‘Calculate duration of test.

secondsPast = endTime – startTime

IF secondsPast > 0 THEN

‘Calculate cycles per second.

cyclesPerSecond = INT(cyclesToTest/secondsPast)

ELSE

‘Cpu is too fast for test. Set cycles per second to the cyclesToTest parameter.

cyclesPerSecond = cyclesToTest

END IF

END SUB

TIME$

‘Beginning of program

DIM SHARED cyclesPerSecond AS LONG

SUB gaugeCyclesPerSecond (cyclesToTest AS LONG)

DIM startTime as STRING, startTimeINT as LONG

DIM endTime as STRING, endTimeINT as LONG

DIM cycles AS LONG

DIM secondsPast AS LONG

‘Ensure that cyclesToTest is a positive number.

IF cyclesToTest < 1 THEN cyclesToTest = 100000

‘Run test.

startTime = TIME$

FOR cycles = 1 TO cyclesToTest

NEXT

endTime = TIME$

‘Convert the start and end times to seconds.

startTimeINT = INT(VAL(MID$(startTime, 1, 2)) * 360) + INT(VAL(MID$(startTime, 4, 2)) * 60) + INT(VAL(MID$(startTime, 7, 2)))

endTimeINT = INT(VAL(MID$(endTime, 1, 2)) * 360) + INT(VAL(MID$(endTime, 4, 2)) * 60) + INT(VAL(MID$(endTime, 7, 2)))

‘Compensate for a test begun just before 12:00 am system time.

IF startTimeINT > endTimeINT THEN endTimeINT = endTimeINT + 24 * 3600

‘Calculate duration of test.

secondsPast = endTimeINT - startTimeINT

IF secondsPast > 0 THEN

‘Calculate cycles per second.

cyclesPerSecond = INT(cyclesToTest/secondsPast)

ELSE

‘Cpu is too fast for test. Set cycles per second to the cyclesToTest parameter.

cyclesPerSecond = cyclesToTest

END IF

END SUB

THE DELAY SUBROUTINE

SUB pleaseDelay (milliseconds AS LONG)

DIM delayCycles AS LONG

DIM delay AS LONG

‘Calculate number of cycles to loop through.

delayCycles = milliseconds * (cyclesPerSecond/1000)

‘Delay program.

FOR delay = 0 TO delayCycles

NEXT

END SUB

PART 2 IN DETAIL

With the first step complete, we can now consistently delay a program for a given number of milliseconds regardless of the speed of the cpu. The goal of the second step is to determine how long particular sections of our code should take to run, and implement the appropriate delay accordingly. In a simple program, it may be possible to employ one delay to compensate for the main program loop. More complex programs may require implementing multiple delays. For each section of code that needs a delay, execute the following steps.

1. CALCULATE THE CODE RUN TIME
Calculate how many milliseconds the code in question takes to run on the current cpu using FOR/NEXT with TIMER or TIME$. This step is similar to the gaugeCyclesPerSecond function above. Store the code execution duration in a SHARED variable for later reference.

TIMER

‘Beginning of code

DIM SHARED codeExecuteDuration AS LONG

‘Calculate run time using TIMER

SUB gaugeCodeDuration (cyclesToTest AS LONG)

DIM startTime AS DOUBLE

DIM endTime AS DOUBLE

DIM cycle AS LONG

‘Decide how many times to run the code. (Default is 1000 if parameter is 0.)

IF cyclesToTest < 1 THEN cyclesToTest = 1000

‘Note the start time.

startTime = TIMER

‘Run the code.

FOR cycle = 1 TO cyclesToTest

‘**Code to test goes here.**

NEXT

‘Note the end time.

endTime = TIMER

‘Compensate for a test run just before 12:00 am system time.

IF startTime > endTime THEN endTime = endTime + 24 * 3600

‘Calculate how many seconds the test took to run.

codeExecuteDuration = endTime – startTime

‘Subtract the amount of time that just running an empty FOR/NEXT loop would have taken.

‘(cyclesPerSecond was determined in the gaugeCyclesPerSecond SUB above.)

codeExecuteDuration = codeExecuteDuration – (cyclesToTest/cyclesPerSecond)

‘Calculate how long running the code once takes.

codeExecuteDuration = codeExecuteDuration / cyclesToTest

‘Adjust to milliseconds.

codeExecuteDuration = codeExecuteDuration * 1000

END SUB
TIME$

‘Beginning of code

DIM SHARED codeExecuteDuration AS LONG

‘Calculate run time using TIME$

SUB gaugeCodeDuration (cyclesToTest AS LONG)

DIM startTime AS STRING, startTimeINT AS INTEGER

DIM endTime AS STRING, endTimeINT AS INTEGER

DIM cycle AS LONG

‘Decide how many times to run the code. (Default is 1000 if parameter is 0.)

IF cyclesToTest < 1 THEN cyclesToTest = 1000

‘Note the start time.

startTime = TIME$

‘Run the code.

FOR cycle = 1 TO cyclesToTest

‘**Code to test goes here.**

NEXT

‘Note the end time.

endTime = TIME$

‘Convert the start and end times to seconds.

startTimeINT = INT(VAL(MID$(startTime, 1, 2)) * 360) + INT(VAL(MID$(startTime, 4, 2)) * 60) + INT(VAL(MID$(startTime, 7, 2)))

endTimeINT = INT(VAL(MID$(endTime, 1, 2)) * 360) + INT(VAL(MID$(endTime, 4, 2)) * 60) + INT(VAL(MID$(endTime, 7, 2)))

‘Compensate for a test run just before 12:00 am system time.

IF startTimeINT > endTimeINT THEN endTimeINT = endTimeINT + 24 * 3600

‘Calculate how many seconds the test took to run.

codeExecuteDuration = endTimeINT – startTimeINT

‘Subtract the amount of time that just running an empty FOR/NEXT loop would have taken.

‘(cyclesPerSecond was determined in the gaugeCyclesPerSecond SUB above.)

codeExecuteDuration = codeExecuteDuration – (cyclesToTest/cyclesPerSecond)

‘Calculate how long running the code once takes.

codeExecuteDuration = codeExecuteDuration / cyclesToTest

‘Adjust to milliseconds.

codeExecuteDuration = codeExecuteDuration * 1000

END SUB
2. DETERMINE THE OPTIMUM RUN TIME
Create a duration variable for the code in question, and test (through trial and error) running for various durations until the optimum amount of time is discovered (using the code in the next step). Initialize the duration variable at the beginning of the program or in the appropriate initialization sub/function.

‘Beginning of code

DIM SHARED codeDurationTime AS INTEGER

‘Initialize the duration variable in milliseconds.

‘The exact value of this variable is usually determined through trial and error.

‘For example, if the ball in our sample program is traveling too fast, increase the codeDurationTime to slow it down.

codeDurationTime = 450

3. IMPLEMENT THE APPROPRIATE DELAY
Implement the delay subroutine at the end of each instance of the code that needs to be speed equalized, checking to make sure the delay is actually necessary. The amount of the delay should be the codeDurationTime minus the codeExecuteDuration.

‘Code Loop

DO

‘**Code**

‘Obviously the delay can only slow the code down, not speed it up, so if the time it takes for the code to execute is longer than the time desired, there’s no reason to run a delay.

IF codeExecuteDuration < codeDurationTime THEN pleaseDelay(codeDurationTime - codeExecuteDuration)

LOOP

Of course, FB users would replace the pleaseDelay call with the SLEEP command.

PART 3 IN DETAIL

Now that the code has been created to automatically equalize our code’s speed for multiple cpus, a couple additional considerations should be addressed. One potential negative result of speed equalization is the long pauses program startup generates by running subroutines that gauge cpu speed. The goal of the third step is to determine the most efficient way of gauging cpu speed without annoying users every time the program runs. It is recommended to run a speed gauge the first time a program is run, but then save the cpu’s speed settings and afterwards only run the speed gauge if the user chooses to do so.

LIMITING SPEED GAUGE FREQUENCY

DIM SHARED cyclesPerSecond AS LONG

DIM SHARED codeExecuteDuration AS LONG

DIM SHARED fileExists AS INTEGER

DIM fnum AS INTEGER

'Check to see if speed has been gauged yet

SHELL "dir/a/on/b cpuspeed > t.tmp"

fileExists = 0

frnum = FREEFILE

OPEN "t.tmp" FOR INPUT AS #frnum

 DO WHILE NOT EOF(frnum) AND fileExists = 0

fileExists = 1

 LOOP

CLOSE #frnum

'FreeBasic check for if a file exists:

'fileExists = LEN(DIR$("cpuspeed"))

IF fileExists = 0 THEN

 'Gauge the current cpu speed

 LOCATE 10, 6

 PRINT "Gauging Machine. Please Wait..."

gaugeCyclesPerSecond 8999999

gaugeCodeDuration 89999

 frnum = FREEFILE

 OPEN "cpuspeed" FOR OUTPUT AS #frnum

WRITE #frnum, cyclesPerSecond, codeExecuteDuration

 CLOSE #frnum

ELSE

 frnum = FREEFILE

 OPEN "cpuspeed" FOR INPUT AS #frnum

INPUT #frnum, cyclesPerSecond, codeExecuteDuration

 CLOSE #frnum

END IF

SHELL "erase t.tmp"

DYNAMIC SPEED CONTROL

In addition to having the program gauge the cpu only as much as necessary, it might be helpful in some cases to allow the user to control how fast the program runs. Code can be added to allow for the user to adjust the speed of the program by changing the codeDurationTime variable(s).

TESTING FOR CYCLES VS. SECONDS

It could be argued that attempting to test a cpu for a specific number of cycles brings one back to the original issue of problems with cpus of extremely different speeds. Very slow computers could take a VERY long time to run the tests and discourage users from running the program at all. Very fast computers could complete the tests too quickly to achieve reliable results. This legitimate concern can be addressed by changing the testing code from running a particular number of test cycles to testing the code for a particular amount of time while counting how many loops where completed. Just keep in mind that the extra code it takes to check whether the time is up will need to be accounted for in the calculations of codeExecuteDuration variable(s) to maintain consistent speed control.

PUTTING IT ALL TOGETHER

Here’s our bouncing ball program implementing the new speed optimized code:

DECLARE SUB changePosition ()

DECLARE SUB dopause ()

DECLARE SUB drawObject ()

'--

'BEGIN new code

DECLARE SUB gaugeCyclesPerSecond (cyclesToTest AS LONG)

DECLARE SUB pleaseDelay (milliseconds AS LONG)

DECLARE SUB gaugeCodeDuration (cyclesToTest AS LONG)

'END new code

'--

SCREEN 13

CLS

'Share all the variables for simplicity.

DIM SHARED ball(1000) AS INTEGER

DIM SHARED endProg AS INTEGER, ox AS INTEGER, oy AS INTEGER

DIM SHARED oxl AS INTEGER, oyl AS INTEGER, oc AS INTEGER

DIM SHARED oxdir AS INTEGER, oydir AS INTEGER

DIM SHARED screenXLimit AS INTEGER, screenYLimit AS INTEGER

'--

'BEGIN new code

DIM SHARED keyInput AS STRING

DIM SHARED cyclesPerSecond AS LONG

DIM SHARED codeExecuteDuration AS LONG

DIM SHARED codeDurationTime AS INTEGER

DIM SHARED initDurationTime AS INTEGER

DIM SHARED fileExists AS INTEGER

DIM frnum AS INTEGER

DIM displayDuration AS INTEGER

initDurationTime = 5

codeDurationTime = initDurationTime

displayDuration = -1

'END new code

'--

'Note the dimensions of the current screen mode

screenXLimit = 320

screenYLimit = 200

'Initialize the variable triggering when the program should end.

endProg = 0

'Define the starting point of the ball.

ox = 30

oy = 100

'Define the diameter of the ball

oxl = 10

oyl = oxl

'Define the ball’s starting direction.

oxdir = 1

oydir = 1

'Define the ball’s color

oc = 4

'Draw and capture the ball picture.

CIRCLE (ox, oy), (oxl / 2), oc

PAINT (ox, oy), oc

GET (ox - (oxl / 2) - 1, oy - (oyl / 2) - 1)-(ox + (oxl / 2) + 1, oy + (oyl / 2) + 1), ball

'--

'BEGIN new code

checkgauge:

CLS

fileExists = 0

'Qbasic check for if a file exists:

SHELL "dir/a/on/b cpuspeed > t.tmp"

frnum = FREEFILE

OPEN "t.tmp" FOR INPUT AS #frnum

 DO WHILE NOT EOF(frnum) AND fileExists = 0

fileExists = 1

 LOOP

CLOSE #frnum

'FreeBasic check for if a file exists:

'fileExists = LEN(DIR$("cpuspeed"))

IF fileExists = 0 THEN

 'Gauge the current cpu speed

 LOCATE 10, 6

 PRINT "Gauging Machine. Please Wait..."

gaugeCyclesPerSecond 8999999

gaugeCodeDuration 89999

 frnum = FREEFILE

 OPEN "cpuspeed" FOR OUTPUT AS #frnum

WRITE #frnum, cyclesPerSecond, codeExecuteDuration

 CLOSE #frnum

ELSE

 frnum = FREEFILE

 OPEN "cpuspeed" FOR INPUT AS #frnum

INPUT #frnum, cyclesPerSecond, codeExecuteDuration

 CLOSE #frnum

END IF

SHELL "erase t.tmp"

'END new code

'--

CLS

DO

changePosition

'--

'BEGIN new code

IF codeExecuteDuration < codeDurationTime THEN pleaseDelay (codeDurationTime - codeExecuteDuration)

drawObject

IF displayDuration > 0 THEN

 LOCATE 1, 1

 PRINT LTRIM$(RTRIM$(STR$(codeDurationTime))) + " milliseconds "

END IF

'Capture any user keystroke.

keyInput = INKEY$

SELECT CASE UCASE$(keyInput)

 'Toggle displaying the codeDurationTime if the 'D' key is pressed.

 CASE "D"

 displayDuration = displayDuration * -1

 LOCATE 1, 1

 PRINT SPACE$(40)

 'Reset codeDurationTime to initDurationTime

 CASE "R"

 codeDurationTime = initDurationTime

 'Decrease the code duration by 1 millisecond if the down arrow key is pressed.

 CASE CHR$(255) + "P"

 codeDurationTime = codeDurationTime - 1

 IF codeDurationTime < 0 THEN codeDurationTime = 0

 'Increase the code duration by 1 millisecond if the up arrow key is pressed.

 CASE CHR$(255) + "H"

 codeDurationTime = codeDurationTime + 1

 'Decrease the code duration by 1 millisecond if the down arrow key is pressed.

 CASE CHR$(0) + "P"

 codeDurationTime = codeDurationTime - 1

 IF codeDurationTime < 0 THEN codeDurationTime = 0

 'Increase the code duration by 1 millisecond if the up arrow key is pressed.

 CASE CHR$(0) + "H"

 codeDurationTime = codeDurationTime + 1

 'Exit program if the Escape key is pressed.

 CASE CHR$(27)

 endProg = 1

 'Re-gauge computer if the Enter key is pressed.

 CASE CHR$(13)

 SHELL "erase cpuspeed"

 GOTO checkgauge

END SELECT

'END new code

'--

LOOP UNTIL endProg = 1

END

SUB changePosition

IF (ox + oxdir) >= (screenXLimit - oxl - 2) OR (ox + oxdir) < 0 THEN

 oxdir = oxdir * -1

END IF

IF (oy + oydir) >= (screenYLimit - oyl - 2) OR (oy + oydir) < 0 THEN

 oydir = oydir * -1

END IF

ox = ox + oxdir

oy = oy + oydir

END SUB

SUB drawObject

PUT (ox, oy), ball, PSET

END SUB

'--

'BEGIN new code

SUB gaugeCodeDuration (cyclesToTest AS LONG)

DIM startTime AS DOUBLE

DIM endTime AS DOUBLE

DIM cycle AS LONG

DIM secondsPast AS DOUBLE

'Decide how many times to run the code. (Default is 1000 if parameter is 0.)

IF cyclesToTest < 1 THEN cyclesToTest = 1000

'Note the start time.

startTime = TIMER

'Run the code.

FOR cycle = 1 TO cyclesToTest

IF (ox + oxdir) > (screenXLimit - oxl) OR (ox + oxdir) < 0 THEN

 oxdir = oxdir * -1

 END IF

 IF (oy + oydir) > (screenYLimit - oyl) OR (oy + oydir) < 0 THEN

 oydir = oydir * -1

 END IF

ox = ox + 0

oy = oy + 0

PUT (ox, oy), ball, AND

 'Capture any user keystroke.

 keyInput = INKEY$

 SELECT CASE UCASE$(keyInput)

 'Toggle displaying the codeDurationTime if the 'D' key is pressed.

 CASE "D"

 displayDuration = displayDuration

 LOCATE 1, 1

 PRINT SPACE$(40)

 'Reset codeDurationTime to initDurationTime

 CASE "R"

 codeDurationTime = initDurationTime

 'Decrease the code duration by 1 millisecond if the down arrow key is pressed.

 CASE CHR$(255) + "P"

 codeDurationTime = codeDurationTime - 0

 IF codeDurationTime < 0 THEN codeDurationTime = 0

 'Increase the code duration by 1 millisecond if the up arrow key is pressed.

 CASE CHR$(255) + "H"

 codeDurationTime = codeDurationTime + 0

 'Decrease the code duration by 1 millisecond if the down arrow key is pressed.

 CASE CHR$(0) + "P"

 codeDurationTime = codeDurationTime - 0

 IF codeDurationTime < 0 THEN codeDurationTime = 0

 'Increase the code duration by 1 millisecond if the up arrow key is pressed.

 CASE CHR$(0) + "H"

 codeDurationTime = codeDurationTime + 0

 'Exit program if the Escape key is pressed.

 CASE CHR$(27)

 endProg = 0

 'Re-gauge computer if the Enter key is pressed.

 CASE CHR$(13)

 END SELECT

NEXT

'Note the end time.

endTime = TIMER

'Compensate for a test run just before 12:00 am system time.

IF startTime > endTime THEN endTime = endTime + 24 * 3600

'Calculate how many seconds the test took to run.

secondsPast = endTime - startTime

'Subtract the amount of time that just running an empty FOR/NEXT loop would have taken.

'(cyclesPerSecond was determined in the gaugeCyclesPerSecond SUB above.)

secondsPast = secondsPast - (cyclesToTest / cyclesPerSecond)

'Calculate how long running the code once takes.

secondsPast = secondsPast / cyclesToTest

'Adjust to milliseconds.

codeExecuteDuration = secondsPast * 1000

END SUB

SUB gaugeCyclesPerSecond (cyclesToTest AS LONG)

DIM startTime AS DOUBLE

DIM endTime AS DOUBLE

DIM cycles AS LONG

DIM secondsPast AS DOUBLE

'Ensure that cyclesToTest is a positive number.

IF cyclesToTest < 1 THEN cyclesToTest = 100000

'Run test.

startTime = TIMER

FOR cycles = 1 TO cyclesToTest

NEXT

endTime = TIMER

'Compensate for a test begun just before 12:00 am system time.

IF startTime > endTime THEN endTime = endTime + 24 * 3600

'Calculate duration of test.

secondsPast = endTime - startTime

IF secondsPast > 0 THEN

'Calculate cycles per second.

cyclesPerSecond = INT(cyclesToTest / secondsPast)

ELSE

'Cpu is too fast for test. Set cycles per second to the cyclesToTest parameter.

cyclesPerSecond = cyclesToTest

 END IF

END SUB

SUB pleaseDelay (milliseconds AS LONG)

DIM delayCycles AS LONG

DIM delay AS LONG

'Calculate number of cycles to loop through.

delayCycles = milliseconds * (cyclesPerSecond / 1000)

'Delay program.

FOR delay = 0 TO delayCycles

NEXT

END SUB

'END new code

'--

