[image: image1.png]


Multi Processing Core for QB

By Nick Verlinden

Digital-x@zatlap.be

What is this ‘core’?

If you didn’t read the first article, I will now clarify your mind. This core you are reading about is made in QB for running ‘simultaneous’ subs. By simultaneous I don’t really mean at the same time. It just runs an essential part of the sub, then switches to the main core checking weather there’s something new the core must do, like activate an application. Due to the limits of QB, you will have to learn how it works in order to programming it. For an example, you cannot program a sub with normal variables. Why you ask? Well it’s because the core exits the sub to call the system sub, when it switches back to where it was, the variables are erased. That’s why I defined some standard global variables for strings and integers. You can always add more types.

How Multi Processing is this thing?

Like I said, It doesn’t actually run subs simultaneous, it just switches between subs constantly. Not to be seen by the naked eye, because the core works pretty fast, fast enough to do some amazing stuff while still displaying an updated clock or something else.

A little visual perspective of how a good MPQ works:

Why would someone write such a thing?

I started this project out of curiosity if I could do it and if it where really possible. First I made a clock sub witch ran simultaneous with another (can’t remember what), then I said, holy smoke this works! Then I started to rewrite the whole thing with a more adaptive core, one that could run any sub simultaneous, not only the clock. The first really releases where a little buggy, but later on it became more stable. Until recently, I felt that the project was near to finished as a demonstration. Thinking logically and designing plans to make this, I completely wrote a simple system in 3 months. The result is what you see now.

What are the plans?

The plan was to make a library out of it. After thinking about it how this would be possible and how I was going to do that, I came to the conclusion it’s not going happen. It isn’t possible with my system. Why you ask? Well for starters you have to make an interface to drive the core. The core itself you handles the subs. Something has to drive the core. The interface adds a process to the core, the interface will also tell the core to end a process. In my demo’s case the interface was the script.appshelf sub. And the CMD sub was the shell, the users interface to input commands. The interface holds all the information of the present subs. If you want, you could make an interface with a scripting language, that can load files as subs. Off coarse that will slow it down a bit. But you see the possibilities of making an interface is limited as far as QB is. In my demo you could run a maximum of 255 processes due to the shared variable space needed. Try to declare some more, you will probably get an out of memory error.

So what may the project bring?

Since I’m not going to make a library out of it, Instead I will guide you trough the design process using an example. I’m still working on the example, so you might see it in a time not too far from now. I’m planning on making a source merger with maybe an IDE for the core functions. The IDE will most likely not happen, I maybe know something about logical routines, but I don’t have clue to make a proper text editor with scroll function marking functions in red like in a good IDE (if anyone is interested to work with me on that, please contact me on my e-mail. But for now I’m working on a good solution but it may take some time. But in the mean time, I will start working on a guide, on how to build a good interface for the core. Maybe even with a simple graphical interface, who knows. Until then, stay tuned! This is far from finished. Who knows we will eventually end up with a DOS GUI with multiprocessing possibilities .

Support the project, have questions, suggestions?

You may always contact me on the e-mail address above. Don’t hesitate to correct my problems. I look forward to it.

MPQ core





Interface





SUB





User Inerface





Scripts





Shell





QB





User layer


This is the interface between the user and the computer





Application layer


This is where processes are





Interface layer


This is where we interact with the core, where we drive it





Core layer


This is where all the action is, it handles everything from checking for finished processes to switching between subs.





Handle Variables





Check Routines





Switch Routines





Table demonstrating different layers of an MPQ system








